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ABSTRACT 

Neuroscience is limited by the difficulty of recording neural activity, identifying cell types, and 
mapping connectivity in high throughput. In this thesis, I present several scalable technologies 
aimed at improving our ability to characterize the activity, composition, and connectivity of 
neural circuits. My primary contributions include the design for a nanofabricated electrical 
recording device and a new approach to nanofabrication within swellable hydrogels; a high-
throughput method for mapping the locations of cell types in tissue; an approach to direct 
sequencing of proteins at the single molecule level; an approach to directly recording neural 
activity into the sequence of RNA, enabling it to be detected by DNA sequencing; and a method 
for molecular barcoding of neurons, with the goal of enabling a high-throughput approach to 
neural circuit mapping. I conclude with a consideration of the limitations of the academic 
incentive structure as concerns the development and deployment of new technologies, and propose 
a structure for basic science research, complementary to the academic structure, based on the 
systematic establishment of well-funded, highly focused research projects with clear goals, an 
incentive to rapidly disseminate information, and limited lifetimes. 
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Chapter 1   
Tool Development for Neuroscience 

 

iological systems are comprised of many components. In the other branches of science, 
systems consisting of multiple components are tractable when the components are 
identical and weakly interacting, lending themselves to statistical techniques. Practically 

all biological systems are statistical ensembles of non-identical, strongly-interacting components, 
and thus do not submit themselves to statistical analysis. Individual components can be studied in 
isolation, but knowledge of the function of a component in vitro rarely informs its function in 
vivo. The problem is exacerbated in the brain, where there are many more different kinds of cells 
than in other tissues (1, 2), interactions are highly non-local (3, 4), and the time-scales involved 
are much faster. 

Given the failing of statistical techniques, many researchers believe that our ability to model and 
predict biological systems will be improved if we develop better tools to observe more components 
of the system simultaneously (5–7). Examples include increasingly multiplexed tools for measuring 
the distribution of RNA in space (8–11), for measuring the distributions of proteins in space (12–
15), for measuring the projections of neurons (16–19), and for mapping neural activity (20–23). 
Through this work, progress has been made towards achieving “complete” descriptions of 
biological systems. Particularly in genomics, modern droplet-based approaches now enable the 
expression levels of every gene in the genome to be quantified in individual cells (24, 25). In 
neuroscience, however, technologies for observing the activity of neurons are still 5 to 6 orders of 
magnitude away from a whole-brain recording system for the mouse brain; methods for measuring 
connections between neurons are likewise ~3-4 orders of magnitude away from being able to map 
the entire mouse brain; and measures for observing the spatial organization of gene expression in 
tissues are still limited to ~1% of the genome. 

In this dissertation, I present designs or implementations of six new tools, each of which aims at 
increasing our ability to model, measure, or perturb biological systems (and especially neural 
systems) in a different way. Chapters 2 through 5 appear in print already, as described below. All 
of the work I describe here was performed with extensive assistance from many coauthors and 
collaborators. Detailed acknowledgements are included at the beginning of each chapter, in a 
foreword. 

The first technology I describe concerns the measurement of the activity of neurons in the brain. 
Neuronal activity can be measured using electrical recording devices, such as electrodes (26). 

B 
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However, electrode arrays suffer from a tradeoff between the number of channels on the array and 
the cross-sectional area. Recording electrodes can be made as narrow as 10 microns in diameter, 
but typically only have a single recording site, whereas electrode arrays with ~100 micron 
diameter can have hundreds of recording sites, but implantation into brain tissue leads to tissue 
damage up to and including hemorrhage (27, 28). Indeed, as I later demonstrated in the course of 
my Slide-seq work, traumatic brain injury leads to sustained perturbations in neural activity, so 
activity recorded from traditional recording electrodes might not even be a reasonable reflection of 
ordinary activity (29). Moreover, because of the risk of tissue damage, recording electrodes cannot 
generally be applied in human brain tissue, and the number of electrodes that would need to be 
implanted into the brain in order to record from a large majority of the neurons in the brain is 
excessive (30). The field would benefit substantially from improved recording devices that fit more 
recording sites into a smaller frame. In Chapter 2, which appears in print as (31), I lay out a 
design for a new recording device for electrophysiology that breaks the tradeoff between the 
number of recording sites and the cross-sectional area of the electrode array by using an optical 
readout, rather than an electrical readout. The device directly converts electric fields from neurons 
into changes in the refractive index of a semiconductor waveguide, and then uses optical 
reflectometry to detect the refractive index as a function of position along the waveguide, packing 
1000 recording sites into a 100 μm  device, greatly surpassing current designs (32–35). 

In the process of considering the fabrication of electrical recording devices, it rapidly became clear 
to me that existing, 2D fabrication technologies may be insufficient for fabricating the kinds of 
complex nanotechnologies that will be necessary to study brain function. Moreover, althou  In 
Chapter 3, which appears in print as (36), I present a method to reverse the process of Expansion 
Microscopy, a super-resolution technique that had been invented in the lab previously (37), in 
order to shrink structures for nanofabrication purposes. Uniquely among all nanofabrication 
technologies, Implosion Fabrication allows for direct 3D laser writing of metal structures with 
nanoscale feature sizes. Moreover, it uses a 3D molecular scaffold to position materials in space, 
allowing for the fabrication of structures with arbitrary 3D geometries. Implosion Fabrication is 
unlike any other existing nanofabrication technologies, and points the way to new and improved 
3D nanofabrication tools. 

Beyond the measurement of neural activity, a major challenge in neuroscience concerns mapping 
the many kinds of cells in the brain. In contrast to many other tissues, the brain consists of 
strictly organized structures consisting of thousands of cell types (24, 25, 38). Existing methods for 
mapping cell types in space rely on imaging, either using antibodies to characterize the protein 
content of cells or using in-situ hybridization to characterize the RNA content. However, all such 
techniques typically require special optimization for each sample or tissue type. Given the rapidly 
decreasing cost of RNA sequencing, a technique that can directly infer the spatial organization of 
tissue from RNA sequencing data would greatly reduce the barrier to accessing spatial gene 



16 
 

expression data. In Chapter 4, I present Slide-seq (29), a high-throughput tool for mapping the 
spatial distribution of cell types in tissue. Slide-seq enables direct capture of RNA from tissue onto 
a barcoded surface, allowing the positions of the RNAs to be reconstructed. From Slide-seq data, 
using new algorithms that we developed, one can infer the positions of different know cell types in 
space, and discover new patterns of spatial gene expression. Slide-seq leverages the throughput 
advantages of single-cell RNA sequencing technologies, and combines them with spatial resolution 
more typical to in-situ hybridization techniques, to provide a fundamentally new kind of data in 
the genomics toolkit. 

Ultimately, however, a full description of the spatial organization of tissue will include a 
description of the spatial distribution of proteins, as well as RNA. More to the point, most of the 
functions in cells are performed by proteins, so understanding the protein composition of a cell is 
crucial to understand its behavior. RNA sequencing methods such as Slide-seq are often used to 
study the protein composition of cells by proxy, under the assumption that the RNA composition 
of a cell and its protein composition are highly correlated. However, this assumption is not true in 
general (39), necessitating equally powerful methods for visualizing the protein composition of 
cells. Although antibodies have been applied for this purpose (40–42), antibodies are also thought 
to be a major source of the reproducibility crisis in biology (43). In Chapter 5, I present a 
theoretical analysis of an approach for direct protein sequencing (44), which would provide an 
alternative, antibody-free method for highly multiplexed protein detection. 

Returning to the question of neural activity recording, and inspired by the power of RNA 
sequencing methods, in Chapter 6 I present a method for recording transcriptional activity into 
the sequence of RNA with temporal resolution, allowing the history of RNA transcription in a cell 
to be inferred by RNA sequencing. The goal of the project, inspired by earlier work DNA 
tickertapes (45), was to allow for the activity of neurons to be encoded into the sequence of RNA, 
enabling neural activity to be measured in high throughput using RNA sequencers. This method 
was motivated in a similar way to the method presented in Chapter 2: although new methods 
allow measurement of activity from tens of thousands of neurons simultaneously, with theoretical 
access to hundreds of thousands (46), this still amounts only to 0.01%-0.1% of the neurons in the 
brain, and detection of activity in deep neural populations in freely behaving mice remains 
challenging (47–49). Using the RNA recorder presented in Chapter 6, one could in principle record 
from tens or hundreds of millions of neurons simultaneously for costs on the order of $10,000 using 
currently available sequencing technology. Chapter 6 does not yet appear in print, but we expect 
it to come out before the end of 2019. 

Beyond mapping the activity and cell types of the brain, a major challenge in neuroscience is to 
map the structure of the brain. The brain consists of neurons connected by chemical and electrical 
synapses and molecular signaling pathways, and the set of all synaptic connections between 
neurons in the brain is typically referred to as the “connectome.” The impact of the mammalian 
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connectome is difficult to estimate, but will likely be far-reaching: both the connectome and the 
lineage of C. Elegans have become widely used and cited resources for generating hypotheses 
about the interactions between neurons in those circuits (50–52). Moreover, the discovery of new 
cell populations defined by their connectivity regularly upends neuroscience research and prevents 
a holistic analysis of brain circuits (53–55), and the connectome would provide a systematic way 
to catalog all such populations. Stereotyped motifs of connectivity between different cell types 
may support generalized computations or transformations of information, with potential impact on 
AI. Finally, many brain disorders, such as schizophrenia, autism, and Alzheimer’s disease, are 
known to involve changes in synaptic frequency and structure (56–58), and a tool for capturing 
the connectome would enable those phenomena to be studied systematically, potentially opening 
the door to new therapeutics. 

At the same time, as we have come to better appreciate the diversity of cell types and synaptic 
mechanisms in the brain (24), it has become increasingly apparent that molecular annotation (i.e., 
a description of the molecules present in cells and synapses) will be a vital part of any 
connectomic effort. Indeed, this has also been the lesson from the C. Elegans connectome, where a 
lack of molecular annotation impeded our understanding of electrical synapses for more than three 
decades after the synaptic connectome was originally published (59). Ion channels govern how 
neurons generate their electrical pulses, and synaptic transmitters and receptors govern how 
neurons exchange information and transform presynaptic electrical pulses into postsynaptic ones; 
other proteins that generate or receive other messages are also known to be important for neural 
computation. 

Up until now, the connections between neurons have been mapped using electron microscopy, but 
the scale and detail of the brain circuits that have been mapped using electron microscopy has not 
increased significantly since the first EM connectome was published in 1986 (60, 61). Progress in 
this area has been fundamentally limited by the fact that electron microscopy cannot be utilized 
to visualize biomolecules such as proteins, DNA, or RNA. This limitation has two consequences: 
firstly, the proteins and nucleic acids present in a neuron can be used to distinguish that neuron 
from its neighbors, but because electron microscopy cannot visualize these molecules, neurons in 
an EM dataset must be reconstructed using machine vision algorithms (62), which have 
unacceptably high error rates and require hundreds of millions of hours of work by human 
annotators per cubic millimeter (61, 63–72). Secondly, although electron microscopy can be used 
to visualize synapses, the function of the synapses, and of neurons, is defined by their molecular 
composition. By discarding molecular information, EM connectomics is fundamentally incapable of 
inferring the computational function of a neural circuit. 

In Chapter 7, I lay out strategies for an optical approach to connectomics using molecular 
barcodes, which would enable the synaptic organization and the molecular composition of neural 
circuits to be mapped simultaneously. Using molecular barcodes provides a potential path to 
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circumvent the computational reconstruction challenge, while the optical readout allows the 
method to be combined with antibody staining techniques to reveal cell types and the 
distributions of proteins in the tissue. Because it is capable of using molecular information to 
distinguish neurons, our technology could map an entire mouse brain with molecular and 
connectivity information in only 3 years for $60M. It could ultimately be used to map large parts 
of the brains of primates, and perhaps even humans. 

However, realizing the full impact of any of the technologies described here will require them to be 
scaled up. In the case of technologies like Slide-seq, they must be made broadly available to the 
academic community to realize their full impact, whereas in the case of connectomic barcoding 
technologies, they must be scaled up to the whole brain level. In both cases, the incentive 
structure in academia is insufficient to support the necessary scalable research efforts. In Chapter 
8, which does not appear in print, I reflect on the phenomenon that the vast majority of tools 
developed in biology achieve extremely limited impact, and connect this phenomenon back to 
limitations on the system of incentives present in academia. I propose the creation of new focused 
research organizations (FROs) that would pursue research that requires more resources and focus 
that one can achieve in academia, but that is not yet ready for a for-profit venture. 

The remaining chapters, 9 through 13, are appendices and supplementary information.  
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Chapter 2   
Optical Reflectometry for Recording Neural Activity 

 

he damage that implanted electrodes cause to neural tissue is one of the greatest 
challenges facing neural activity recording today. To overcome the challenge of 
implantation, Lowell Wood proposed to Adam Marblestone that recording electrodes 

could be delivered to the brain through the vasculature, navigated to locations of interest similarly 
to catheters. To record neural activity, however, it would be necessary to navigate the fiber into 
narrow blood vessels on the order of ~10 microns in diameter. No one had ever packed multiple 
recording sites onto a fiber of only 10 microns in diameter (33), so in order to put many recording 
sites onto our fiber, we would need to find alternative fabrication strategies, or an alternative 
method for detecting neural activity along the length of the fiber. Lowell suggested that optical 
reflectometry could be used to detect changes in the refractive index along the length of the fiber. 
If electrical activity could be transduced to detectable changes in the refractive index, then a fiber 
reflectometer would enable the electric field to be read out in 10 to 20 micron intervals along 10 
centimeters of fiber, without any of the complications of wiring, parasitic capacitance, or thermal 
noise that one encounters in electrical systems. Adam worked on the project, but couldn’t identify 
a method for transducing the electrical activity to a change in the refractive index with high 
enough sensitivity to be detected using an optical reflectometer. 

In my first week after entering the Boyden Lab, in August 2014, Adam pitched me on the project. 
I identified the various electro-optic effects as candidates, including the Pockels, Kerr, and free-
carrier dispersion effects. The free-carrier dispersion effect benefits from relying on the amount of 
charge present in the material, rather than the electric field; thus, it can be amplified for a given 
voltage using a very high capacitance. Adam and I did the primary analysis together, and the 
manuscript was submitted in early 2015, although it took us a year to complete revisions. The 
remainder of this chapter now appears as Ref. (31). 

On its face, the device, if fabricated, would be extremely impactful for neuroscience. Compared to 
existing, highly multiplexed electrophysiology devices (32, 73, 74), the device proposed here would 
have an immensely simplified electrical backend (requiring only a single amplifier, rather than 
many amplifiers and a signal multiplexing scheme), and a ~10x reduced cross-section, at the cost 
of lower sensitivity and time resolution, a tradeoff that would prove useful in many applications. 
However, we lacked experience in the necessary fabrication methods, in materials, and in the 
reflectometry readout, and never pursued it beyond the design stage. 

  

T 
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Summary 
We introduce the design and theoretical analysis of a fiber-optic architecture for neural recording 
without contrast agents, which transduces neural electrical signals into a multiplexed optical 
readout. Our sensor design is inspired by electro-optic modulators, which modulate the refractive 
index of a waveguide by applying a voltage across an electro-optic core material. We estimate that 
this design would allow recording of the activities of individual neurons located at points along a 
10-cm length of optical fiber with 40 μm axial resolution and sensitivity down to 100 μV using 
commercially available optical reflectometers as readout devices. Neural recording sites detect a 
potential difference against a reference and apply this potential to a capacitor. The waveguide 
serves as one of the plates of the capacitor, so charge accumulation across the capacitor results in 
an optical effect. A key concept of the design is that the sensitivity can be improved by increasing 
the capacitance. To maximize the capacitance, we utilize a microscopic layer of material with high 
relative permittivity. If suitable materials can be found—possessing high capacitance per unit area 
as well as favorable properties with respect to toxicity, optical attenuation, ohmic junctions, and 
surface capacitance—then such sensing fibers could, in principle, be scaled down to few-micron 
cross-sections for minimally invasive neural interfacing. We study these material requirements and 
propose potential material choices. Custom-designed multimaterial optical fibers, probed using a 
reflectometric readout, may, therefore, provide a powerful platform for neural sensing. 

Introduction 
The extracellular electrode is a classic neural recording technology. The electrode is essentially a 
conductive wire, insulated except at its tip, placed in the extracellular medium as close as possible 
to a neuron of interest, where it samples the local voltage relative to a common reference in the 
brain (75, 76). This extracellular voltage differential is typically on the order of 100 μV in 
response to an action potential from a nearby neuron (30) and decays over a distance on the order 
of 100 μm. Note that the “transmembrane” voltage during an action potential is much larger, on 
the order of 100 mV.  

The virtues of the electrode are twofold. First, the technique can reach single neuron precision by 
virtue of the electrode being inserted close to the measured neuron. Second, compared to optical 
methods, no exogenous contrast agents (i.e., genetically encoded fluorescent proteins, voltage 
sensitive nanoparticles, chemical dyes) are necessary: the endogenously generated electric currents 
in the brain are sensed directly in the form of a voltage. Ideally, for a neurotechnology to be 
medically valuable for a large number of human patients, it should not require modification of the 
neuron. 

Yet, while multielectrode arrays allow the insertion of many electrodes into a brain, electrodes 
have limitations (30) in scaling to the simultaneous observation of large numbers of neurons. The 
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bandwidth of an electrical wire is limited by the cross-sectional area of the wire, due to the 
increase in RC time constant with increased resistance. Large numbers of high-speed electrical 
signals cannot be effectively multiplexed into a single electrical wire, hence, large numbers of wires 
must be routed out of the brain. Typically, in high-density multielectrode recording systems, one 
lithographically defined electrical trace is used per recording site. Creating such complex electrical 
wiring becomes increasingly difficult for long probe lengths, e.g., with lengths of centimeters. 

In order to maintain the advantages of electrodes, single neuron precision based on endogenous 
neural signals while enabling improved scaling performance, we turn to photonics. 
Telecommunications has moved from electrical to optical data transmission because of the high 
bandwidths and low power losses enabled by optics in comparison to electrical conductors (77); 
the same may be helpful for neural readout technologies. Because optical radiation heats brain 
tissue and scatters off tissue inhomogeneities, a wired (i.e., fiber or waveguide based) optical 
solution may be desirable, i.e., using optical fibers to guide light so that it need not travel through 
the tissue itself. Second, to minimize volume displacement, signals from many neurons should be 
multiplexed into each optical fiber. Third, ideally, the sensing mechanism would rely only on 
endogenous signals, e.g., electrical or magnetic fields from the firing neurons, rather than imposing 
a need for exogenously introduced protein or nanoparticle contrast agents. With ∼100,000 neurons 
per mm  in the cortex, or a median spacing of roughly one neuron per cube of size (21.5 μm) , we 
require an axial resolution of sensing in the range of tens of micrometers. The system should be 
compatible with a variety of form factors, e.g., thin flexible fibers suitable for minimally invasive 
endovascular delivery (78, 79), or rigid pillars suitable for direct penetration of the brain 
parenchyma (80).  

Our proposed architecture is based on two powerful technologies developed by the photonics 
industry: fiber optic reflectometry, which enables optical fibers to act as distributed sensors (81–
84), and electro-optic modulators based on the plasma dispersion effect, which generate large 
changes in the index of refraction of a waveguide in response to relatively small applied voltages 
(85–89). By combining reflectometry with electrooptic modulation, we propose that it would be 
possible to do spatially multiplexed neural recording in a single optical fiber. 

Design Principles: 
Reflectometers are capable of measuring changes in the index of refraction along the length of an 
optical fiber by sending optical pulses down the length of the fiber and recording the times and 
magnitudes of returning reflections (82). We propose to use reflectometry to sense neural activity 
at many points along the length of an optical fiber, as shown in Figure 2-1(a). The goal is to send 
a pulse of light into the fiber and to measure the reflections and their timing to determine the one-
dimensional profile of neural activity along the length of the fiber. The local voltage at a given 
position along the fiber will modulate its local index of refraction via the free carrier dispersion 
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effect, giving rise to reflections. A reflectometer located outside the brain would then determine, at 
each time, the spatial profile of extracellular voltage along the length of the fiber. 

Fiber-Optic Reflectometry 
To determine the magnitude of the reflections generated by a change in local refractive index 
inside a fiber, note that when an electromagnetic planewave propagates in a material with 
refractive index 𝑛  and is normally incident on a material with refractive index 𝑛  the power 
reflected is given by the Fresnel equation: 

 𝑅 =
𝑛 − 𝑛

𝑛 + 𝑛
 (1

) 
The waveguide under consideration will be divided into alternating segments of refractive indices 
𝑛  and 𝑛 , respectively [Figure 2-1(c)]. We define 𝑛 = (𝑛 + 𝑛 )/2 and ∆𝑛 = 𝑛 − 𝑛 . At every 
interface between the two segments, a reflection is generated of magnitude: 

 𝑅 =
∆𝑛

2𝑛
 

(2
) 

FDTD simulations (90) of the waveguide structure using the MEEP (91) software package [Figure 
2-1(e)] confirm that the baseline reflections are of the predicted order of magnitude per this simple 
model. Assuming now that an event (i.e., local neural activity) causes 𝑛  to increase by a small 
amount ∆𝑛 ≪ ∆𝑛 , the resulting reflections generated by the interface are given by 

 𝑅 =
∆𝑛 + ∆𝑛

2𝑛
= 𝑅 +

∆𝑛∆𝑛

2𝑛
+ 𝑂(∆𝑛 ) 

(3
) 

The change in the reflections generated at the interface due to an event is thus 

 ∆𝑅 =
∆𝑛∆𝑛

2𝑛
 

(4
) 

Reflection intensity sensing. Reflectometers are limited both in the minimum value of 𝑅 that they 
can sense (termed the sensitivity) and in the minimum value of ∆𝑅 that they can sense (termed 
the resolution). In our device, the baseline power reflected at the boundaries between 𝑛  and 𝑛  
will be much greater than the sensitivity of the reflectometer. Thus, the ability of the 
reflectometer to measure a change in the index of refraction is limited by its resolution, which is in 
turn fundamentally limited by photon shot noise. For the simple case of a time domain 
reflectometer, the number of photons registered at the detector due to a reflector of magnitude 𝑅  
is given by 

 𝑁 = QE ∙
𝑃

ℎ ∙ 𝑐/𝜆
∙ 𝑅 ∙

1

BW
 (5) 
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where 𝑃 is the power entering the fiber, QE is the detector quantum efficiency, and BW is the 
sensing bandwidth. With a signal-to-noise ratio of 𝑁 √𝑁⁄  due to photon shot noise, the resolution 

 

Figure 2-1 (a) High-level architecture. An optical fiber inserted into the brain acts as a distributed 
sensor for neuronal activity, which is read out by an optical reflectometer. (b) Axial cross-section of the 
probe. When a voltage is applied across the capacitor layer, free-charge carriers in the inner conductor 
and core build up on the surface of the capacitor layer and alter the refractive index in the core. A high 
capacitance is desired to improve sensitivity. (c) Longitudinal cross-section of the reflectometric probe. 
Alternating segments of higher and lower refractive index create baseline reflections at their interfaces, 
the intensities of which are modulated by the local extracellular voltage. The difference between n1 and 
n2 is generated by a thin layer of nonconductive material with a different index of refraction, which also 
serves to localize voltage-dependent refractive index changes to alternating segments. On the surface of 
the fiber, there are alternating sections of metal contact pads and oxide, to separate sensing and 
nonsensing regions. Caption continues on next page. 
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of the detector is given in decibels (dB) by 

 dB   = 10 log 1 +
1

√𝑁
= 10 log

⎝

⎛1 +
1

QE ∙
𝑃

ℎ ∙ 𝑐/𝜆
∙ 𝑅 ∙

1
BW⎠

⎞ (6
) 

In all that follows, we will assume a bandwidth of 1 kHz, a quantum efficiency of 1, and a free-
space wavelength 𝜆 = 1550 nm. Note that a higher bandwidth would be required to see the 
detailed shapes of individual action potentials, as may be required for spike sorting. For 𝑃 = 100 
mW, QE = 1, BW = 1 kHz, and ∆𝑛 = 10 , corresponding to 𝑅 = 2.16 × 10  (-96.6 dB), we 
then have a shot noise limited resolution of 0.01 dB, similar to existing reflectometers. More 
generally, for a signal ∆𝑅 to be sensed on top of a signal 𝑅 , we must have 

 10 log 1 +
∆𝑅

𝑅
≥ 10 log

⎝

⎜
⎛

1 +
BW

QE ∙
𝑃

ℎ ∙ 𝑐/𝜆
∙ 𝑅

⎠

⎟
⎞

 (7
) 

As we describe below, the device will be sensitive to changes in the index of refraction on the 
order of ∆𝑛 ~ 10  to 10 . Thus, because ∆𝑛 ≫ ∆𝑛, the device operates in the linear regime of 

Eq. (3), so Eq. (7) may be conveniently re-expressed as 

(d) Equivalent circuit diagram of the device. The equivalent circuit of the device consists of a resistor 
representing each of the material layers between the neuron and the metal reference line, and three 
capacitors, one of which (𝐶 ) represents the interfacial capacitance, one of which (𝐶 ) represents the 
capacitance of the capacitor layer, and one of which (CQ) represents the capacitance due to the non-
negligible charge centroid in the semiconducting core. The effective series resistance 𝑅  of the 
insulating region capacitor can be neglected provided the capacitor has high quality factor 𝑄 at 1000 Hz, 
and the parallel resistance of the insulating capacitor layer 𝑅  can be neglected provided it is much 
larger than 𝑅 . 𝑅  is the resistance of the metallic reference line, 𝑅  is the resistance of the weak 
inner conductor layer and 𝑅  is the resistance of the brain–electrode interface. If, in addition, 𝑅  is 
chosen to be larger than the other resistances in the circuit, the capacitances 𝐶 , 𝐶 , and 𝐶  may be 
treated as series capacitances. (e) Optical simulation: We used the MIT Electromagnetic Equation 
Propagation (MEEP) package to simulate a waveguide with a silicon core divided into two regions. We 
used Si rather than InP as the simulated core material, because of the availability of well-validated tools 
for Si electrostatics simulation. In the first region, the core consisted of a 500 nm layer of silicon (𝑛 =

3.410). In the second region, the core consisted of a 460 nm-wide layer of silicon with two 20 nm layers 
of a material with 𝑛 = 3.40 both above and below. The effective refractive index in the second region 
was thus 3.409, corresponding to Δ𝑛 = 10 . The electric field profiles are shown on a logarithmic scale 
for the waves transmitted (right) and reflected (left) from the boundary between the regions, shortly 
after the reflection event. The left and right images have been normalized separately. The maximum 
value in the left image is ∼ 10  times smaller than the maximum value in the right image, consistent 
with a value of 𝑅 on the order of 10  for Δ𝑛 = 10 . 
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∆𝑛

𝑛
≥

BW

QE ∙
𝑃

ℎ ∙ 𝑐/𝜆

 (8
) 

With the choices of the bandwidth, quantum efficiency, and wavelength given above, the 
resolution limit is strictly a function of power. The minimum resolvable ∆𝑛 is shown as a function 
of 𝑃 in Figure 2-2. Notably, Eq. (8) is independent of ∆𝑛  in the linear regime. The inset in Fig. 2 
shows a schematic example of the expected output. 

So far, we have discussed the 
detection of changes in the 
refractive index via the 
modulation of reflectivity at 
each interface. An alternative 
strategy to detecting changes in 
the refractive index that 
accompany voltage signals is to 
measure the phase of the 
reflected light. This phase 
measurement can be performed 
with the identical Fourier-
domain reflectometry scheme as 
for the amplitude-based 
measurement. 

Spatial resolution. Other noise 
sources will also impact 
resolution in a realistic case, 
including laser power or phase 
noise and 
photodetector/amplifier/ADC 
noise. In particular, optical 
phase noise associated with the 
laser is limiting in current 
optical frequency-domain 
reflectometry (OFDR) systems 
(92); Littman–Metcalf external 
cavity tunable lasers, with 

narrow linewidths and low phase noise, can be swept at 1 kHz repetition rates over an optical 

 

Figure 2-2: Fig. 2 Minimum resolvable value of Δ𝑛. (a) A 
schematic example of the expected output trace. Black color is the 
baseline reflection registered by the device; orange color is the 
reflection measured when the neuron fires. Spatial resolution is 
exaggerated for illustration. (b) The minimum change in the index 
of refraction of the optical fiber that can be sensed by an ideal, shot 
noise-limited reflectometer is shown as a function of the laser power 
P for a 1 kHz bandwidth, index of refraction of 3.36, quantum 
efficiency close to 1, and 1550 nm wavelength. 
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frequency range of several THz, leading to an OFDR “spatial” resolution of roughly 20 μm, which 
conveniently aligns with the average spacing between neurons in the cortex. 

Repetition rate. Current commercial reflectometers achieve roughly 12 Hz repetition rates over 8.5 
m. This corresponds to a measurement time of 1 ms for any given 10 cm segment of fiber, so using 
a similar device we anticipate that it would be possible to sense reflections along the length of a 10 
cm fiber with a repetition rate of 1 kHz using frequency-domain reflectometers. In an OFDR 
system, the scan rate is limited by the frequency of laser wavelength scanning, the range of the 
scan determines the resolution, and the wavelength resolution of the scan and of the detector 
determines the scan range. Swept-source OCT constitutes demonstration of swept-source 
interferometry at a bandwidth of many kHz (93). 

Electrooptic Modulation 
Silicon electro-optic modulators are widely used in photonics to alter the propagation of light 
through a material in response to an applied voltage (88, 94). Typical applications of electro-optic 
modulators take the form of electrically controlled optical switches: signals of roughly 5 V are used 
to drive optical phase shifts on the order of 𝜋. These devices are optimized for GHz bandwidths, 
with the goal of providing high speed, low power microchip interconnects (87), with bandwidths 
up to 30 GHz possible (95). Here, however, we are interested in the application of similar device 
physics to a very different problem: sensing extracellular neuronal voltages on the order of 100 μV 
at 1 kHz rates. Thus, our required switching rate is 1 millionfold slower, yet our required electrical 
sensitivity is on the order of 1 millionfold better. We are thus concerned with the design of 
electro-optic modulators optimized for sensitivity rather than bandwidth. 

Free Carrier Dispersion Effect. The design shown in Fig. 1(b) consists of an extended multilayer 
semiconductor waveguide on a biased metal substrate, surrounded on three sides by insulation and 
on the fourth side by brain tissue or extracellular fluid. The “inner conductor” and “core” layers 
are weak, transparent conductors which function as resistive layers between the brain and the 
biased reference line. Throughout, we will assume that the core is made of n-doped InP, due to its 
large free-carrier dispersion effect (96), although other core materials are possible (see “Material 
Selection for the Capacitor Layer,” below). Both above and below the core, there are ∼5 nm thick 
layers [Figure 2-1(c)] in which the material alternates along the length of the fiber between the 
core material and a nonconductive material. The nonconductive material is chosen to have a 
refractive index that differs from that of the InP core by 0.01. At the boundaries between the 
alternating regions, there is an effective change in the index of refraction of ∆𝑛 = 10 , giving 
rise to a reflection to 𝑅 = 2.16 × 10  as per Eq. (2). This value of 𝑅  is chosen to avoid 
significant attenuation over the length of the fiber. Note that the sensitivity is independent of ∆𝑛  
as long as we remain in the linear regime of Eq. (3). The alternating regions are 20 μm in length, 
with randomness introduced on the order of 1 μm to avoid the formation of strong peaks in the 
reflectivity with wavelength due to interference. The effective spatial resolution in this design is 
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then limited by the linear density of sensing sites, which are spaced at 40 μm from center to 
center, rather than by the underlying 20-μm spatial resolution of the reflectometer. 

Above the core, there is an insulating layer that serves both as cladding, and as a capacitor over 
which most of the voltage will drop. The capacitor layer must be thick enough to serve as effective 
optical cladding, while also having a high capacitance. To satisfy these constraints, a material like 
barium titanate, strontium titanate, or calcium copper titanate may be preferred. We set this 
layer’s thickness to ∼1 μm. Clearly, the titanate layer must have lower refractive index than the 
core to act as a cladding. Although the optical properties of the titanate layer depend on its 
preparation, the band gap of a single crystal of barium titanate occurs at 3.2 eV (97), and the 
refractive index of barium titanate is ∼2.4 for 𝜆 = 600 nm (98), so it is safe to assume 𝑛 < 2.4 for 
𝜆 = 1.5 μm. Above the capacitor layer, there are alternating regions of metal and insulator, with 
the insulating regions coinciding with the alternating layers in the waveguide core. The metal 
regions provide the electrical interface to the brain and serve to define the sensing locations. 

The InP core and inner conductor are doped and biased appropriately to allow most of the voltage 
to drop over the capacitor layer while maintaining low levels of optical attenuation, for example, 
~10  cm . Other major materials requirements on the inner conductor are that it should ideally 
form an ohmic contact with both the InP core and the metal reference layer, and that its 
refractive index needs to be smaller than that of the n-doped InP, which is around 3.17 at 𝜆 = 1.5 
μm. Potential materials candidates then include type III-V semiconductors with lower refractive 
indices, such as GaP, or II-VI semiconductors, such as ZnSe or CdS. These have lower refractive 
indices at 3.05, 2.45, and 2.30, respectively. These can be expitaxially grown on InP or vice versa 
due to the small lattice mismatch (99), and their conductivities can be tuned by doping. On the 
other hand, it would be important to prevent the formation of a rectifying junction at the 
semiconductor–semiconductor interface, the existence of which would depend on the band 
mismatch and doping levels. It might be possible to lower the junction barrier by, for example, 
minimizing the band gap difference between the two adjacent semiconductors. In the below 
analysis, we will assume that all junctions can be made ohmic. Note that the inner conductor is 
chosen to be thick enough to prevent optical attenuation due to the metal substrate (although 
there are other possible methods to reduce attenuation due to the metal, e.g., by removing the 
metal from the region directly under the waveguide, as in Ref. (85), and the metal substrate is 
chosen thick enough to provide a high-fidelity biased reference throughout the fiber. 

The design relies on the free-carrier dispersion effect (also known as the plasma dispersion effect): 
the index of refraction within the InP core changes due to the accumulation of charge carriers in 
the InP when a voltage is applied across the capacitor layer (85, 96, 100). Many current integrated 
semiconductor electrooptic modulators are based on the free-carrier dispersion effect (85, 86). In 
addition to the free-carrier effect, there exist other modalities of electro-optic modulation, such as 
the linear electro-optic (Pockels) effect (101), the quadratic electro-optic effect (Kerr) (102) and 
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the Stark effect (103). All of these effects would benefit from reducing the thickness 𝑑 of the 
insulator layer to create a large electric field 𝑉/𝑑 (104). However, the free-carrier effect uniquely 
depends on the “charge,” rather than the field, and can thus be amplified further by increasing the 
relative permittivity of the capacitor layer. In short, we need a large capacitor, which can be 
achieved by reducing the thickness and increasing the relative permittivity. For a material with a 
suitably large value of 𝜖 𝑑⁄ , the change in refractive index due to the free-carrier effect will be 
much larger than the changes that can be obtained via the other electro-optic effects. Although we 
focus on the free-carrier effect here, it should be noted that novel electro-optic materials, such as 
potassium tantalate niobate (105), with extremely high electrooptic coefficients compared to 
standard electrooptic materials like lithium niobate, could also potentially make possible designs 
based on the Pockels or Kerr effects. 

An appropriate bias voltage will be applied through the reference conductor to ensure that the 
InP core layer operates in accumulation. This is necessary in order to avoid depletion (106), which 
would reduce the charge recruited to the surface of the capacitor for a given change in 
extracellular voltage, and thus reduce the sensitivity. Thus, we use the reference potential in the 
brain plus some fixed bias to achieve accumulation in the InP core along the waveguide. If needed, 
this bias could be achieved locally, but as long as the brain has no large voltage differences 
(e.g., >1 V), one global bias may be sufficient to allow the entire InP core to operate in 
accumulation. 

Changes in the index of refraction in the free-carrier modulated region of the InP may be modeled 
as changes in the overall effective index of refraction of the fiber (107). The magnitude of this 
effective change is given by weighting the magnitude of the change in the free-carrier modulated 
layer by the percentage of power contained in that layer, i.e., 

 ∆𝑛 = (1 − 𝜂)Δ𝑛  (9
) 

where 𝑛  is the index of refraction in the free-carrier modulated layer and 1 − 𝜂 is the fraction 
of the power in the beam contained in the active region. We will denote by 𝑑 the thickness of the 
capacitor layer, by 𝑏 the thickness of the layer of injected charge carriers in the InP, and by a the 
remaining thickness of the InP layer. An order-of magnitude approximation for 𝜂 is then given by 

 𝜂 ≅
𝑎

𝑎 + 𝑏
 (10

) 
and we have 

 ∆𝑛 = 1 −
𝑎

𝑎 + 𝑏
∆𝑛  (11

) 
For this reason, the InP waveguide is chosen to be thin to maximize the percentage of the optical 
wave contained in the layer containing the injected charges. Because of the deep subwavelength 
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thickness of the active layer, a precise calculation of ∆𝑛  could be done using a full-vectorial 
Maxwell simulation of the waveguide modes (85), but for our purposes, the approximation of Eq. 
(11) suffices to illustrate the basic scaling. Upon applying a voltage across the capacitor layer, the 
density of charge carriers injected into the active layer inside the InP core, denoted by ∆𝑄, is 
simply given by the equation for a parallel plate capacitor: 

 ∆𝑄 =
𝐶

𝑒𝐴𝑏
∆𝑉  

(12
) 

where 𝐶 𝐴⁄  is the capacitance per unit area of the insulator, 𝑒 is the electron charge, 𝑏 is the 
thickness of the layer of injected charge carriers in the InP, and ∆𝑉  is the voltage dropped over 
the insulating region. Equation (12) may be recast in terms of the total voltage ∆𝑉 applied over 
the device by introducing an effective capacitance 𝐶 , such that 

 ∆𝑄 =
𝐶

𝑒𝐴𝑏
∆𝑉 

(13
) 

In practice, 𝐶  will only deviate significantly from 𝐶  when the capacitance of the brain-fiber 
interface is significant (discussed below). The change in refractive index in the region with the 
injected charge is related to the change in the carrier concentration by a power law (96). When 
the injected carriers are electrons, the magnitude of the electro-optic effect in InP is greatest. The 
relation for the change in refractive index in the injected charge region is then 

 ∆𝑛 , = 𝐶
𝐶

𝑒𝐴𝑏
∆𝑉 

(14
) 

where 𝐶  is an empirically defined constant. For InP, the value of 𝐶  is given for 1.55 μm light by 
(108) 

 𝐶 = −5.6 × 10 cm  (15
) 

This wavelength is chosen because the waveguide is made of InP, and InP is transparent at these 
telecom wavelengths. Telecom windows are around 1.3 and 1.5 μm due to local minima of the 
absorption of water, a hard-to-avoid contaminant in silica fibers. The exact choice of wavelength 
is not critical to the sensing mechanism itself; according to the Drude model of the free-carrier 
dispersion effect (108), the coefficient in Eq. (12) is quadratic in the wavelength.  

Similar values are obtained for other semiconductors and other wavelengths (96, 108). To find the 
effective refractive index within the InP waveguide, we multiply Eq. (14) by the volume factor 1 −

𝜂 from Eq. (10). Assuming 𝑏 ≪ 𝑎 (i.e., that the injected charge layer is deeply subwavelength 
while the waveguide core thickness is on the same order as the wavelength), we find 

 ∆𝑛 ≅ 𝐶
1

𝑎 + 𝑏

𝐶

𝑒𝐴
∆𝑉  

(16
) 
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Note that for a given waveguide thickness (i.e., 𝑎 + 𝑏 constant), the result is independent of the 
thickness of the charged layer 𝑏. We will henceforth take 𝑎 + 𝑏 ~ 500 nm. For a value of 𝐶 𝐴⁄  
on the order of 10 , justified below, we find ∆𝑛  ~ 2 × 10  for ∆𝑉 ~ 100𝜇V. 

Effects of Other Capacitances. The brain–electrode interface also has a capacitance 𝐶  of 
~100  (109, 110), which arises due to the presence of an electrical double-layer [see Figure 

2-1(d)]. In addition, there is a capacitance 𝐶  due to the finite length scale of the charge 
distribution inside the semiconductor. This latter capacitance is given by 𝐶 = 𝜖 𝜖 𝐴 𝑑⁄ , where 
𝜖  is the relative permittivity of the core material, 𝜖  is the permittivity of free space, 𝐴 is the 
area of the sensing region, and 𝑑  is the charge centroid. The core can be one of many 
semiconductor materials (e.g., Si, InP), leading to similar fundamental electrostatics. We 
performed semiconductor simulations using the Sentaurus TCAD device simulator (version K-
2015.06, June 2015) to evaluate 𝐶 . We used Si as the simulated core material, because of the 
availability of accurate and readily available tools for Si electrostatics simulation. To calculate the 
charge centroid 𝑑 , we simulated the electrostatics of an interface between silicon n-doped to a 
level 10 cm  and a layer of oxide with relative permittivity of 𝜖 = 5 and thickness of 𝑑 =

1 nm. When the silicon was in accumulation, the charge centroid was found to be 2.4 nm. The 
charge centroid is expected to be similar for our setup provided the value of  is similar for the 

capacitor layer, which it would be for a layer of barium titanate with 𝜖 = 5000 and 𝑑 = 1000 nm 
(see below). It is more difficult to do these simulations for less common materials like InP, but we 
anticipate that the charge centroid for InP will be similar. Thus, in all following calculations, we 
will assume a capacitance of 4.5  for the interface between the core and capacitor layer. 

The electrostatics simulations also showed that, although the total charge Δ𝑄 recruited to the 
capacitor layer surface upon application of a voltage is greater for higher doping levels, the 
relative change in charge (Δ𝑄 𝑄⁄ ) is greater for lower doping levels. However, for Δ𝑄 ≪ 𝑄, the 
sensitivity condition in Eq. (8) depends to a good approximation only on Δ𝑄, not on Δ𝑄 𝑄⁄ , so the 
sensitivity of the device is increased for higher doping levels. 

Figure 2-1(d) shows an equivalent circuit diagram of the device, which includes the interfacial 
capacitance and the capacitance associated with the charge distribution. At < 1000 Hz, and 
subject to appropriate materials choices (see Sec. 2.2.3), the impedance of the circuit is dominated 
by these three capacitors rather than by purely resistive elements of the circuit. For this reason, 
we may ignore the purely resistive elements and treat the capacitances as though they were in 
series. To a good approximation, therefore, the charge that accumulates on the surface of the 
insulating region in response to a voltage Δ𝑉 across the entire device is given by 

 𝑄 = 𝐶 Δ𝑉 (17) 

where the effective capacitance 𝐶  of the surface and insulating region capacitors in series is 



31 
 

 𝐶 =
1

1
𝐶

+
1

C
+

1
𝐶

 (18
) 

The capacitance of the insulating region is given by 

 𝐶 = 𝜖 𝐴
𝜖

𝑑
 (19

) 
where 𝑑 is the thickness of the insulating region, 𝜖  is the relative permittivity, 𝐴 is the area of 
the sensing region, and 𝜖  is the permittivity of free space. Along with the laser power discussed 
above, the capacitance per unit area of the capacitor layer, 𝐶 𝐴⁄ , will be the primary figure of 
merit for determining the sensitivity and noise characteristics of the device. The effective 
capacitance 𝐶  is shown in Figure 2-3(a) as a function of the capacitance 𝐶  of the capacitor 
layer, assuming a surface capacitance per unit area (109, 110) of 100  and a sensing length of 

20 μm. Note that the effective capacitance ceases to increase for values of 𝐶 𝐴⁄ ≫ 4.5 , 

because for these values, the capacitance is dominated by the core-capacitor interface. 
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Noise Sources. A primary electrical 
constraint on the device is that 
the impedance at 1 kHz must be 
dominated by the capacitor layer. 
If the effective capacitance per 
unit area of the capacitor is 𝐶 =

5 , corresponding to a value 

𝐶 = 10 , then the capacitance 

of a region with width 4 𝜇m and 
length 20 𝜇m is 4 pF, 
corresponding to an impedance of 
40 MΩ at 1 kHz. 

Assuming that the metal layer has 
a resistivity no greater than 
100 nΩm (10× that of silver), if 
the metal layer is made at least 
500 nm thick, it will have a 
resistance of 10,000 Ω along the 
entire length of the fiber. The 
resistance of the inner conductor 
and core will be negligible 
compared to the huge capacitive 
impedance, provided they are 
chosen to be semiconductors. 
Finally, we must consider the 
voltage noise on the recording site 
itself, i.e., the metal contact pad 
interfacing directly with the brain. 

The recording site is often modeled as a constant phase element (111) and noise contributions 
come from the real part of its impedance (75), and are frequency dependent. We choose to write it 
in terms of parameters 𝐺 and 𝑚, with an impedance of 𝑍 = 1 𝐺(𝑗𝜔)⁄ . The parameter 𝐺 
reflects the conductivity of the material, and the parameter 𝑚 is often related to surface roughness 
and transport to the metal–electrolyte interface (112), with typical parameters ranging from 0.5 to 
0.9. We will assume 𝑚 = 0.5 for representing a rough surface, and a 1 kHz impedance magnitude 
of 0.1 MΩ. Thus, the resistance of the device is dominated by the recording site, as opposed to the 
ground lead or other elements, and the above parameters amount to a total RMS noise over a 

Figure 2-3: Properties of the design parametrized by 𝑪𝐢𝐧𝐬/𝑨. 
(a) The effective capacitance 𝐶 /A  given in Eq. (18) is shown 
as a function of 𝐶 /𝐴, assuming a capacitance of 100 μF/cm  
at the surface of the device and a capacitance of 4.5 μF/cm  at 
the interface between the core and capacitor layers. (b) The 
minimum detectable change in voltage [obtained from Eqs. (8) 
and (16)] is shown as a function of 𝐶 /𝐴  for systems with 
(from top to bottom) a 100 mW laser (blue), a 30 mW laser 
(orange), and a 100 mW  laser (green). The black dashed lines 
correspond to 50 and 100 μV. To sense signals at the 50 μV 
level with a 100-mW laser, a capacitance on the order of 
10 μF/cm   is necessary. 
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1 kHz band, found by integrating 4𝑘 𝑇Re(Z )𝑑𝑓 from 𝑓 = 0 Hz to 𝑓 = 1000 Hz, of ~1 𝜇V. This 
model agrees with what is found experimentally for similar sized electrode pads (112). 

Efforts to reduce the recording site impedance are only needed for adjusting the noise influence of 
the recording site itself. Even an unplated gold surface will be sufficient here, because instead of 
0.1 𝑀Ω for an electroplated surface, we will have 𝑅𝑒(𝑍) = 1𝑀Ω, with a resulting noise of ∼ 4𝜇V 
RMS instead of the 1 𝜇V RMS calculated above. Only if 𝐶  were increased dramatically (e.g., to 
the equivalent impedance of ∼ 1 MΩ at 1 kHz), would efforts be needed to reduce the recording 
site impedance to prevent attenuation of the signal via the voltage divider. In any case, the 
voltage drops primarily over the capacitor layer and is not attenuated by resistors prior to the 
capacitor, and these electronic noise voltages are lower than the sensitivity of the device, which is 
limited by optical shot noise, and so can be neglected. Note that the impedances given here are 
also large enough for the input impedance of an implanted recording device (113). 

Other forms of exogenous noise include mechanical bending of the fiber and thermo-optic effects, 
which may be particularly significant given the small width of the waveguide. However, these 
effects are expected to occur at a much lower frequency than the ∼ 1 kHz frequency content of 
spikes, and thus can be filtered out. Likewise, static or slowly changing bends (e.g., due to the 
heart beat) in the fiber can be subtracted off. 

Dynamic Range. Local field potentials in the brain may vary by up to hundreds of millivolts, 
generating fields on the order of 1 kV cm⁄  across a 1 𝜇m capacitor layer. By contrast, the 
dielectric breakdown strength of barium titanate is roughly 10 kV cm⁄ , so dielectric breakdown is 
unlikely to be an issue (114). On the other hand, the dynamic range of the device may be limited 
by the density of states in the core, and thus it will be necessary to adjust the bias of the device 
(using the conductive reference layer) in order to ensure that the device can function in 
accumulation. If the device is allowed to function in depletion, 𝐶  will be much smaller than 𝐶 , 
thus reducing the sensitivity. Similarly, operation in inversion will suffer from deep depletion 
effects. 

Tissue Heating. When we send light down the fiber, some light power may dissipate into the 
tissue. Depending on the level of round-trip light attenuation in the waveguide, each probe will 
dissipate a fraction 𝑓 of the applied light power 𝑃. We next evaluate the acceptable level of such 
dissipation and how this constrains the device properties. 

The human brain endogenously dissipates 25 W or 19 mW mL⁄ . The blood perfusion rate of 
human brain gray matter and white matter is roughly 𝑟 = 35000 Wm ℃  (115). To 
avoid > 2℃ brain temperature rise, per the requirements laid out in Ref. (30) and elsewhere, we 
then require that each probe is surrounded by a perfusion volume of 𝑉 ≈

∙ ℃
. 
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For a sense of scale, assuming that a 100 mW laser is used for the reflectometer, if 𝑓 ≈ 50% of 
this light power is dissipated into the tissue on a round-trip reflection, we then require a 250 𝜇L 
perfusion volume, or a cylinder of radius 1.5 mm around each probe, assuming a 10 cm probe 
length. An attenuation of 50% over 20 cm corresponds to ∼ 3 dB over the length of the fiber, or ∼
0.15 dB cm⁄ , on the order of the intrinsic optical attenuation of silicon (116) or indium phosphide 
(117). An additional potential source of tissue heating arises from transverse scattering of light at 
the interfaces between the successive waveguide segments of different refractive index. Using 
MEEP simulations to quantify the amount of light scattered out of the waveguide core, for 
adjacent segments with refractive indices of 3.409 and 3.41, we estimate that there will be a 
3 × 10 % loss per boundary. With 500 boundaries per centimeter, this means a 0.015% loss per 
centimeter or 0.3% loss over a round trip in a 10 cm fiber. However, if Δ𝑛  is ∼ 10  instead, as 
discussed above, the amount of scattering generated this way is expected to be substantially 
reduced. 

Attenuation due to bending is expected to be insignificant, with silicon-on-insulator waveguides 
reported to experience attenuation of only ∼ 0.1 dB per 90° turn at a radius of curvature of 1 𝜇m. 
Finally, to avoid transmitting any light into the brain tissue itself, a strong reflector can be placed 
at the end of the probe. Because the reflectometer has high spatial resolution, a large reflection 
from the end of the probe is not expected to interfere with the measurements. 

Material Selection for the Capacitor Layer 
The key figure of merit determining the properties of the device is the capacitance per unit area of 
the capacitor layer, 𝐶 𝐴⁄ . Along with the laser power, the figure of merit determines the 
sensitivity via Eq. (16). In Figure 2-3(b), the sensitivity of the device is shown as a function of 
𝐶 /𝐴. The vertical axis shows the minimum voltage signal that can be resolved using a shot 
noise-limited reflectometer, as calculated using Eqs. (8) and (16). The power law region (a straight 
line on the log–log plot) corresponds to the region in which 𝐶 ≈ 𝐶 , so that the reflection 
coefficient 𝑅 ∝ 𝐶 Δ𝑉/A. For values of 𝐶 𝐴⁄  much greater than 4.5 , we have 𝐶 ≈ 𝐶 , so 

the sensitivity does not improve with increasing 𝐶 /𝐴. 

Materials such as barium titanate, strontium titanate, and calcium copper titanate would likely be 
able to achieve a sufficiently large value of 𝐶 /𝐴 while also separating the core from the metal 
sensing pads. The chosen material must be able to maintain its high relative permittivity while 
film thickness is scaled down sufficiently to enable a high capacitance. Since dielectric properties 
often arise from grain boundaries within the material, the achievable grain size sets an 
approximate lower bound on the film thickness that can be utilized. Barium titanate films have 
been demonstrated with relative permittivities of roughly 5000 with grain sizes around 1 μm (118), 
r with relative permittivities of 2500 with grain sizes of 100 nm (119). Likewise, calcium copper 
titanate ceramics have been fabricated with relative permittivities between 1000 and 10,000 and 
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grain sizes from hundreds of nanometers to micrometers (120). Finally, relative permittivities on 
the order of 105 seem to be possible with larger grain sizes (121, 122). 

We are not aware, however, of direct measurements of the dielectric properties of high-dielectric 
ceramics in films of < 1 𝜇m thickness grown in InP substrates, thus verification of these properties 
should be a key question for early experimental studies of voltage probes like the one proposed 
here. A further potential concern with using dielectrics, such as barium titanate, is the presence of 
hysteresis in such materials (123). Since the neuronal signals involve potential changes on the 
order of 100 𝜇V, the hysteresis is expected to be small, but a detailed experimental 
characterization would be required. 

We will assume that it is possible to fabricate a dielectric film with thickness 𝑑 ∼ 1 𝜇m, d ∼ 1μm, 
and with ∼ 10 , for example, a 1 𝜇m-thick film of calcium copper titanate with 𝜖 ∼ 10 , 

corresponding to a value of 𝐶 /𝐴 of 10 . With such a capacitor, the device with a 30 mW 

laser would be capable of measuring signals at the 100 μV level and the device with a 100 mW 
laser would be capable of measuring signals at the 50 μV level. 

Discussion 
Ultra-large-scale neural recording is highly constrained both by physics and by the biology of the 
brain (30). Here, we have argued that an architecture for scalable neural recording could combine 

1) the use of optical rather than electronic signal transmission to maximize 
bandwidth,  
2) confined rather than free-space optics to reduce the effects of light scattering and 
absorption in the 
3) spatial or wavelength multiplexing within each optical fiber in order to minimize 
total tissue volume displacement, 
4) a thin form factor to enable potential deployment of fibers via the cerebral 
vasculature, and 
5) direct electrical sensing to remove the need for exogenous dyes or for genetically 
encoded contrast agents. 

Traditional electrode-based recording systems require a separate electrical connection for every 
recording site. They are limited in the depth they can access, because the magnitude of the 
thermal noise increases with the length of the probe. Furthermore, each connection must be 
accessed separately by the acquisition system (124). By contrast, the architecture proposed here 
offers several benefits, including the ability to read out neural activity over many centimeters with 
high sensitivity, the ability to multiplex tens of thousands of recordings into a single fiber with a 
simplified acquisition system, and the ability to scale the physical dimensions of the fiber without 
sacrificing performance. 



36 
 

In our proposed design, the 100 𝜇V scale extracellular voltage resulting from a neuronal spike is 
applied across a thin, high-dielectric capacitor. Charging of the capacitor results in modulating the 
accumulation layer in the neighboring InP waveguide core, altering the local refractive index of 
the InP and causing a detectable optical reflection. Reflectometry then enables multiplexed 
readout of these spike-induced reflections. Notably, the entire design fits into a package with a 
cross section that is in principle < 5 𝜇m on a side (although additional material could of course be 
added for mechanical support if desired). 

Every neuron in a mammalian brain is within a few tens of microns of the nearest capillary (125), 
well within the distance necessary for direct electrical sensing of the action potential (30), thus, in 
principle, the fine microvessels of the cerebral vasculature could serve as a delivery route for 
neural activity sensors, if the fibers could be made sufficiently thin (79), i.e, well below 10 μm for 
the smallest capillaries. Thus, multiplexing thousands of neural signals into a single optical “wire” 
of < 10 μm thickness could potentially be enabling for novel endovascular approaches to neural 
interfacing. 

It is worthwhile to contrast the proposed system to both microelectrode-based recording and 
optical imaging solutions. In our design, signals are captured electrically, similar to the recording 
mechanism of a microelectrode, and then are transduced to an optical communication channel for 
extracting the data from the brain. By contrast, in imaging approaches, the neuronal signal is 
transduced into the photochemical state of an indicator dye or protein inside the neuron itself, and 
then the signal is extracted by irradiating the brain and then capturing emitted fluorescent 
photons on a camera. Consequently, imaging approaches flood the brain tissue itself with light 
power and transduce signals via chemicals delivered to the neurons themselves. Our proposed 
method, in contrast, does not require flooding the brain tissue itself with light: the electrical 
pickup of the signal does not require power nor exogenous chemical probes, and the data collection 
is photon-efficient since, to the greatest extent possible, our design confines all light to the inside 
of the waveguide itself. 

A key challenge in implementing such a design is to achieve a figure of merit 𝐶 𝐴⁄  for the 
capacitor sufficiently large to allow sensitivity to the neural signals of interest. We think that it 
would be possible using barium titanate or calcium copper titanate to achieve a figure of merit on 
the order of 10 , which would allow the device presented here to sense signals of approximately 

50 𝜇V with a 100 mW laser. 

In addition, supercapacitors with submicrometer thickness can be fabricated that achieve specific 
capacitances on the order of 1 𝑚𝐹 cm⁄  (126), which would allow for the detection of 30 𝜇V 
signals with a 100 𝜇W laser, if they could be made compatible with our device. The sensitivity 
would also be improved substantially if a core material could be found with a smaller charge 
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centroid. Early experimental studies building on our theoretical estimates should seek to verify 
that a sufficiently high capacitance can be achieved in the desired form factor. 

Several alternative strategies exist for improving the sensitivity of the device. The device senses 
the voltage in each sensing region twice, at the front and back ends of each sensing region, which 
could be factored into the analysis to improve SNR. If tissue-heating concerns can be overcome, 
the sensitivity of the device can be improved by increasing the strength of the laser. The 
sensitivity can also be increased by using a different core material with a stronger free-carrier 
dispersion effect. For example, at 𝜆 = 1.3 𝜇m, there is a maximum in the free-carrier dispersion 
effect of InP at a doping concentration around 3 × 10 cm  (108). By using a core material with 
a higher bandgap, such as GaP, it would be possible to perform reflectometry using visible light, 
for example, around 600 nm, which would increase the sensitivity of the device by increasing the 
overlap of the optical electric field with the charge-containing region of the core. Alternatively, 
silicon is also possible as a core material, for simplicity of fabrication. However, it would be 
necessary for the chosen core material also to have acceptable levels of field-induced birefringence 
and nonlinear response, effects which could cause frequency conversion or interfere with the 
reflectometry process. These processes should be evaluated empirically for a given power level, 
materials choice, and waveguide configuration. Finally, the sensitivity of the proposed device is 
dependent on the signal to noise ratio of the reflectometer. Although we have applied a 
conservative estimate of the shot-noise-limited resolution, other sources of noise will have to be 
minimized to achieve sufficient sensitivity for neural recording. 

Finally, a major challenge will be the achievement of an attenuation level low enough to avoid 
excessive heating of the tissue. The heat dissipation can be reduced by reducing the laser power or 
using a core material with lower optical attenuation. For this reason, GaP is also an appealing 
option for the waveguide core, as it has been reported to have intrinsic optical attenuation much 
less than 0.1 dB cm⁄  at 600 nm (127, 128). Additionally, heat dissipation into the tissue could be 
reduced by the addition of an active heat transport system (such as a microchannel heat sink) to 
the device architecture (129, 130). 

The cost of the device will depend on the final choice of materials, the fabrication processes 
required, and the extent to which existing semiconductor fabrication pipelines are capable of 
meeting the requirements. Broadly, these devices can be fabricated with methods widely used in 
the nanofabrication field, but not all of these methods are industrialized at the scale of modern 
microchip manufacturing. Ultimately, such a device could be packaged together with optical or 
electrical stimulation channels for bidirectional neural interfacing. 

If appropriate materials combinations can be fabricated, we have shown that the device could 
achieve the requisite sensitivity, noise level, and response time for recording both neural spikes 
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and local field potentials. More broadly, our results suggest that integrated photonics could enable 
highly multiplexed readout of neuronal electrical signals via purely optical channels. 
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Chapter 3   
Implosion Fabrication 

 

n late 2014, Expansion Microscopy became a major focus of the Boyden lab. Fei Chen and 
Paul Tillberg presented expansion microscopy to the lab at a lab meeting in November 2014, 
and I asked at the end whether the process was invertible (the answer was yes). Adam 

Marblestone realized that the idea had promise for the purpose of positioning DNA origami in 3D, 
and encouraged me to work on it. We met with Mark Skylar-Scott, who had done related work 
previously (131–133), and he helped us to get set up with the fluorescein patterning chemistry. 

After several months of experiments, Dan Oran joined the project in early 2015. Dan has an 
undergraduate degree in photography, and brought with him extensive knowledge of old 
photographic chemistries. Dan succeeded in getting the basic patterning setup working, and I 
worked out the system for shrinking and dehydrating the gel in acid. Working with Ruixuan Gao, 
Dan, Rui and I validated the resolution of the patterning method using gold nanoparticles 
conjugated to the gel on the patterns. 

A key breakthrough came in the spring of 2016, when Dan had the idea to leverage an old 
photographic chemistry to deposit silver onto the surface of gold nanoparticles anchored into the 
gel. This allowed us to create nearly solid silver nanostructures. Dan and I tried several different 
methods for sintering them, and I eventually discovered the laser sintering approach. Shortly after 
the silver methods were developed, I became more involved in other projects and we agreed that 
Dan would finish the remaining experiments, since I had done more work originally. Dan 
continued working on the project for over a year, making significant process improvements, 
preparing the samples for the final conductivity demonstrations in Figure 3 and the ring 
resonators in Figure 4, while I remained involved in a planning, mentoring, and analysis capacity. 
Once we completed the conductivity data in Figure 3, I wrote most of the manuscript, and we 
divided the work of making the figures. To Dan’s credit, I advocated for submitting to Nature 
Nanotechnology rather than Science, but Dan prevailed on me that it was worth a shot at Science. 
The reviews were positive, and Dan finished revisions in 8 days. 

Implosion Fabrication is unique among my projects for having been developed in a “working 
forwards” fashion, i.e., starting with the idea for the technology (reversing ExM) rather than an 
idea for the problem. The initial idea of using it to position DNA origami seemed unworkably 
complex, and we discovered in the process of the technology that high resolution is secondary in 
most nanofabrication applications to material control. Luckily, Implosion Fabrication gives both 
material control and resolution. But even at the time of the first paper, the application was 
unclear. We now believe that the key feature of ImpFab that other methods lack is the ability to 

I
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pattern materials with a density gradient. By patterning materials with high refractive-index 
contrast in a gradient pattern, we can make flat optical elements. It is an exciting success story 
that we ended up (unintentionally) with a technology capable in principle of achieving that goal. 
However, if we had started with that goal in mind, we might have taken a more direct route to 
the goal.  
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Summary 
Lithographic nanofabrication is often limited to successive fabrication of two-dimensional layers. 
We present a strategy for the direct assembly of three-dimensional nanomaterials consisting of 
metals, semiconductors, and biomolecules arranged in virtually any three-dimensional geometry. 
We use hydrogels as scaffolds for volumetric deposition of materials at defined points in space. We 
then optically pattern these scaffolds in three dimensions, attach one or more functional materials, 
and then shrink and dehydrate them in a controlled way to achieve nanoscale feature sizes in a 
solid substrate. We demonstrate this process, Implosion Fabrication (ImpFab), by directly writing 
highly conductive, 3D silver nanostructures within an acrylic scaffold using a volumetric silver 
deposition process, achieving resolutions in the tens of nanometers and complex, non-self-
supporting 3D geometries of interest for optical metamaterials. 

Introduction 
Most nanofabrication techniques currently rely on 2- and 2.5-dimensional patterning strategies. 
Although popular direct laser writing methods allow for the single-step fabrication of self-
supporting, polymeric 3D nanostructures (134–141), arbitrary 3-D nanostructures (e.g., solid 
spheres of metal, or metallic wires arranged in discontinuous patterns) are not possible (142, 143). 
This raises the question of whether a versatile 3D nanofabrication strategy could be developed 
that would allow independent control over the geometry, feature size, and chemical composition of 
the final material. 

A hallmark of 2D nanofabrication strategies is that materials are deposited in a planar fashion 
onto a patterned surface. By analogy, we reasoned that a general 3D nanofabrication strategy 
could involve deposition of materials in a volumetric fashion into a patterned scaffold. However, 
such scaffolds face a fundamental tension: they should be porous and solvated, to allow for 
introduction of reagents to their interior, while also being dense, to allow material placement with 
nanoscale precision. To resolve this contradiction, we reasoned that an ideal scaffold could be 
patterned in a solvated state, and then collapsed and desiccated in a controlled way, densifying 
the patterned materials to obtain nanoscale feature sizes. Although several groups have previously 
experimented with shrinking materials, the shrinking process typically requires harsh conditions 
and chemical changes that may destroy functional materials (144–146). We use 
polyacrylate/polyacrylamide hydrogels for the scaffold material, as they have pore sizes in the 
range of 10nm to 100nm (147), are known for their ability to expand and shrink up to ~10-fold in 
linear dimension (37, 148–150), and methods for optically patterning hydrogels are well-established 
(131–133, 151, 152). 

Results 
Our implementation takes place in three phases (see Methods). It has previously been found that 
two-photon excitation of fluorescein within acrylate hydrogels causes the fluorescein to react to 
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the hydrogel (131–133). We take advantage of this phenomenon to attach fluorescein molecules 
carrying reactive groups to the expanded gel in defined three-dimensional patterns (Figure 

 

Figure 3-1: Implosion fabrication (ImpFab) process. (A)  Schematic of the patterning process, 
showing the expanded polyelectrolyte gel (black lines and dots, top insets), and fluorescein (green star, 
bottom inset) binding covalently to the polymer matrix upon multi-photon excitation (red volume). Not 
to scale. Fluorescein bears a reactive group, R. (B) Residual fluorescence of patterned fluorescein 
immediately following patterning. (C) Schematic of functionalization of patterned gel by attaching small 
molecules, proteins, DNA or nanoparticles to reactive R groups from (A). Red outline indicates 
patterned volume in (A). (D) Image of fluorescent streptavidin nanogold conjugates attached to the 
pattern in (B). (E) Schematic of the volumetric deposition process, showing growth of silver (blue) on 
top of gold nanoparticles within the hydrogel matrix. (F) Image of silver deposited onto the pattern in 
(D) by transmission optical microscopy. Following silver growth, the pattern has high optical density. 
(G) Schematic of the shrinking and dehydration process. (H) SEM image of the silverized pattern from 
(F) following shrinking and dehydration. (I) Fluorescent patterns created with different laser powers 
(see Methods). (J) Image of a gel patterned with both metal nanoparticles (yellow) and CdTe quantum 
dots (blue) in different locations. (K) Images of fluorescent patterns before shrinking (left, 10x gel), 
after shrinking and dehydration in a 10x gel (top right), and after shrinking and dehydration in a 20x 
gel (bottom right). (L) The mean lateral (blue) and axial (red) shrink factors (initial size/final size) for 
10x gels (n = 6), including dehydration. (M) The mean lateral shrink factor for 20x gels (yellow, n = 3). 
Error bars show s.d. 
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3-1A,B). In the second phase, following removal of the fluorescein patterning solution, the gel is 
functionalized by depositing materials onto the patterned reactive groups (Figure 3-1C,D), using 

one of several available conjugation chemistries. This volumetric deposition step defines the 
composition of the material, and may be followed by additional deposition chemistries  

 

Figure 3-2: Resolution of implosion fabrication. (A) Design of the resolution test pattern including 
pairs of single-voxel-thick lines (bottom right). (B) Fluorescence image of the patterns from (A). (C) 
Fluorescence image of the pattern (from B) after shrinking. (D) Measures of isotropy in lateral and axial 
dimensions. Yellow and blue bars represent lateral isotropy for 10x gels and 20x gels, respectively, and 
the red bar represents axial isotropy for 10x gels. (E) Fluorescence images of single-voxel lines before 
shrinking. (F) Scanning electron microscopy (SEM) images of single-voxel lines after 10x shrinking. The 
gel was functionalized with gold nanoparticles for contrast. (G) Cross-sectional intensity profiles of the 
lines imaged by SEM (dashed lines in (F)), showing how full-width half-maxima (FWHM) of single 
voxel lines were measured. (H) Linewidths, measured in G, for five different gel samples. Dots are 
measurements for individual lines; bars indicate mean + s.d. across individual lines within a single gel. 
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(“intensification”) to boost the functionality of the deposited molecules or nanomaterials (Figure 
3-1E,F). Importantly, the functional molecules or nanoparticles are not present during the 
patterning process, so the specific physical properties of the molecules or nanoparticles used will 
not affect the patterning. In the final phase, the patterned and functionalized scaffold is shrunken 
by a factor of 10 to 20 in each dimension with acid or divalent cations over a period of hours, and 
dehydrated to achieve the desired nanoscale resolution (Figure 3-1G,H). The scaffold is not 
removed, as it supports the nanofabricated material and allows for the creation of disconnected or 
high-aspect-ratio structures that would otherwise collapse outside of the gel. 

We found the polyacrylate gel to be a suitable substrate for patterning and deposition. The gel 
readily accommodates a wide variety of hydrophilic reagents, including small molecules, 
biomolecules, semiconductor nanoparticles or metal nanoparticles (Figure 9-1A-C). For laser 
powers below a critical threshold, the density of the deposited functional material is controllable 
(Figure 3-1I, Figure 9-2). We estimated based on the maximum pattern fluorescence in Figure 
9-2A that binding sites are patterned into the gel at concentrations of at least 79.2μM in the 
expanded state, leading to a final concentration in the shrunken state of greater than 272.0mM or 
1.64 x 1020 sites per cubic centimeter for a 10x gel (see below). By repeating our patterning and 
deposition process, we were able to deposit multiple materials in different patterns in the same 
substrate, such as gold nanoparticles and cadmium telluride nanoparticles (Figure 3-1J). We 
observed by fluorescence that the deposition of the second material onto the first pattern was at 
most 18.5% of the deposition of the second material onto the second pattern, confirming that 
multiple materials may be independently patterned and deposited using this process (Figure 9-3). 

The shrinking process is performed either by exposing the expanded gel to hydrochloric acid or to 
divalent cations (e.g. magnesium chloride, Figure 9-1A-C). The latter may be useful if the 
patterned materials are sensitive to acid, although we found that both streptavidin and DNA 
remain functionally intact following acid shrinking (Figure 9-1D). Gels that are shrunken in 
hydrochloric acid can subsequently be dehydrated, resulting in additional shrinking, and this 
process preserves the patterned geometry (Figure 3-1K). The final dehydrated gel is transparent 
(Figure 9-4A), and atomic force microscopy (AFM) characterization measured the surface 
roughness over a 1 x 1 μm2 window to be ~0.19 nm (root-mean square; Figure 9-4B). Except 
where stated otherwise, all samples described as “shrunken” hereafter are shrunken and 
dehydrated. We tested two different gel formulations that differ only in cross-linker concentration: 
“10x” (0.075% cross-linker) and “20x” (0.0172% cross-linker) (see Methods). The 10x gels, and 
the patterns within, shrink consistently by a linear factor of 10.6 ± 0.8 in the lateral dimension 
(mean ± s.d., n=5 gels) and 34.8 ± 1.8 in the axial dimension (n=6 gels, Figure 3-1L), with the 
disproportionate axial shrink occurring during dehydration, possibly due to surface interactions 
between the shrinking polymer and the surface of the glass container. For the 20x gels, we 
observed 20.1 ± 2.9-fold shrink in the lateral dimension (n=4 gels, Figure 3-1M). The 20x gel 
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formulation is challenging to handle manually due to its delicacy, so the axial shrink factor was 
not measured, and they were not used further, except for distortion measurements. 

To validate the minimum feature size of ImpFab, we designed a test pattern containing pairs of 
single-voxel-wide lines (Figure 3-2A-D). Since such post-shrink features are necessarily below the 
optical diffraction limit, we deposited gold nanoparticles and employed scanning electron 
microscopy (SEM) to assess the resolution after shrinking. We estimated the resolution by 
measuring the line width (full width at half maximum, FWHM) (Figure 3-2E-G), and obtained a 
value of 59.6 ± 3.8 nm (mean ± s.d. across samples; n = 5; Fig. 2H) for 10x gels. The mean 
within-sample standard deviation of the line width was 8.3 nm. We estimated the isotropy of the 

shrinking process by calculating the ratio of the longest diameter of the patterned circle to the 
orthogonal diameter (Figure 3-2C, D). The percent distortion thus calculated was 6.8 ± 6.9% for 
10x gels (mean ± s.d., n=6 gels), and 8.2 ± 4.3% for 20x gels (n=4 gels). We found that the ratio 
of axial to lateral shrink was on average within 3.1 ± 2.5% of the mean of this ratio (n=6 10x 
gels), indicating that the disproportionate axial shrink is highly reproducible. Thus, it is possible 
to account for the disproportionate axial shrink in the design of the pattern. To illustrate this 
point with the fabrication of a cube, we patterned a rectangular prism and imaged it before and 
after dehydration (Figure 9-5). As expected, the rectangular prism contracts in the axial 
dimension during the dehydration step and turns into a cube. 

 

Figure 3-3: Characterization of silver conductivity. (A) SEM overview of a shrunken silver wire 
between two landing pads, prior to sintering. (B) SEM image of wires before and (C) after sintering. 
(D) Resistance of three separate conductive pads, of dimension 35x35 µm, measured before and after 
sintering. Each color represents a single conductive pad. Error bars show standard error in a four-point 
conductivity measurement. (E) Resistance of individual sintered wires (black dots), their mean (blue), 
and standard deviation, as compared to the theoretical conductivity of a similar structure made of bulk 
silver (green).  
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Since nanoscale metal structures are broadly important in fields such as nanophotonics, 
metamaterials, and plasmonics, we applied ImpFab to create conductive silver structures. We 
anchored gold nanoparticles to patterned amines via a biotin-streptavidin linkage (see Methods). 
We were initially unable to deposit gold nanoparticles at high enough concentrations to form 
conductive structures. We thus developed an intensification process based on photographic 
intensification chemistries, in which silver is deposited onto the surface of gel-anchored gold 
nanoparticles in aqueous phase while the gel is in the expanded state (Figure 3-1E, F). Finally, 
the gel is treated with a chelating agent to remove any remaining dissolved silver, and is then 
shrunken via exposure to hydrochloric acid and subsequent dehydration. 
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Even with the silver intensification process, wire structures fabricated using the method above 
(Figure 3-3A) were not reliably conductive, or had resistances on the order of hundreds of ohms. 
We tested several different methods of sintering, including treatment with oxygen plasma, 
electrical discharge, and heating the sample to ~500 degrees in an oven. However, none of these 
methods resulted in well-preserved and evenly sintered silver structures. Instead, we found that 
the silver patterns could be sintered effectively using the same 2-photon setup used for the initial 

photopatterning step. We found that samples irradiated at relatively low power levels (see 
Methods, chapter 9) showed a distinct change in the morphology of the embedded silver 

 

Figure 3-4: Fabrication of 3D metal nanostructures. (A) Two-dimensional structures fabricated with 
ImpFab with micron-scale resolution, before and (B) after sintering, visualized using SEM. (C) Similar 
structures fabricated with hundred-nanometer feature size, after shrinking and dehydration but before 
sintering. (D) Maximum intensity projection of fluorescence image of a 3D structure prior to shrinking 
(135, 351). (E) Maximum intensity projection of a reflected light image from the same structure 
following volumetric silver deposition, prior to shrinking. (F) Maximum intensity projection of a 
fluorescence image of the same structure, shrunken but not dehydrated. 
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nanoparticles consistent with sintering (Figure 3-3B,C). We measured the conductivity of three 
patterned silver squares both before and after sintering, and found that the resistance of each 
square decreased by 20-200 fold (Figure 3-3D). Sintered wires were measured in a 4-point probe 
system, and were found to have linear IV curves (Figure 9-6). Wires sintered in this way had an 
average resistance of 2.85 ± 1.68Ω (mean ± standard deviation; n = 10), with the resistance 
depending on the density of the patterned silver (Figure 9-6B). By contrast, an ideal silver wire 
with the same geometry would have a resistance of 0.38Ω, suggesting that our sintered structures 
achieved a mean conductivity 13.3% that of bulk silver, with individual samples obtaining 
conductivities as high as 30% that of bulk silver (Figure 3-3E). 

To verify that our method is compatible with a wide range of 3D geometries, we fabricated 
structures with dimensions ranging from hundreds of nanometers to several microns (Figure 3-4A-
C). We found that these structures retain their morphology following sintering (Figure 3-4B). We 
fabricated a non-layered, non-connected three-dimensional structure comprised of many 2D 
substructures arranged at different angles relative to each other in space, which would not lend 
itself to fabrication by other means (Figure 3-4D). Whereas our previous experiments had only 
observed the fabrication of two-dimensional silver structures, we used confocal reflection 
microscopy to confirm that silver was deposited throughout the volume of the 3D pattern (Figure 
3-4E). Finally, using confocal microscopy, we were able to validate that the structure retained its 
shape following shrinking (Figure 3-4F). Due to the modular nature of ImpFab, the extension of 
the ImpFab strategy to other kinds of materials, such as other semiconductors or metals, only 
requires the development of an aqueous deposition chemistry that is compatible with the gel 
substrate. Future iterations may use alternative chemistries, such as dendrimeric complexes for 
direct deposition of metals or semiconductors within the hydrogel (153, 154), or DNA-addressed 
material deposition (155). Finally, we note that although we used a conventional microscope that 
is not optimized for patterning, and that was limited to a 4cm/s scan speed (in post-shrink 
dimensions), we were able to create objects spanning hundreds of microns to millimeters (Figure 
9-7). Using faster patterning systems (131), ImpFab could ultimately enable the creation of 
centimeter-scale nanomaterials. 
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Chapter 4   
Slide-seq 

 

y understanding is that Slide-seq began as an idea that Evan Macosko proposed to Fei 
Chen, although Bob also claims to have thought of it before he met Evan. Fei 
presented it to me in spring of 2017, and I was drawn to it by the promise that we 

could use it for high-throughput projectomics, for example by combining it with methods for 
barcoding RNA (16). I am still interested in that application, although the application to create 
comprehensive 3D maps of gene expression is equally compelling. 

At the beginning of the project, it was determined that Bob would work out the library 
preparation protocol, while I would work out how to make and sequence the pucks. Sequencing 
the pucks and developing the algorithms for reconstructing the images turned out to be relatively 
straightforward, but the library preparation was challenging. Bob came up with two innovations 
that each improved our RNA yield by an order of magnitude: firstly, he discovered in November 
2017 that using liquid tape, rather than acrylamide, as a bind surface resulted in a ~5X-10X 
improvement in RNA yield. Then, although the hybridization step was initially performed dry, 
Bob had the idea to do the hybridization in 6X SSC, which gave a further ~5X improvement in 
yield. For whatever reason, the RT buffer itself was insufficient to enable RNA to bind to the 
beads. 

As the project progressed, I specialized more in the data analysis, and Bob specialized more on the 
wet lab protocol and sample processing. Josh Welch had the idea to apply Liger (now in press) in 
order to determine the cell-type composition of each bead. After experimenting with Liger, I 
realized that Liger assigns beads to consensus cell types derived from both datasets together. This 
led to the cell types on each Slide-seq puck being slightly different, depending on the composition 
of the puck. However, what we really wanted was to map the cell types from the Slide-seq dataset 
onto fixed cell types derived from the single cell RNA sequencing data. Modifying the Liger 
algorithm to hold the cell types in the scRNAseq dataset constant resulted in a regression problem 
in the lower dimensional space provided by the NMF decomposition in Liger. I proposed this idea 
to Aleksandrina Goeva, and she developed and implemented it, resulting in the NMFReg 
algorithm that allows cell types from scRNAseq to be mapped onto the puck. 

One key insight I had was that because Slide-seq data is intrinsically mixed, i.e. because many 
beads have RNA contributions from multiple cell types, Slide-seq is much more powerful when one 
uses genes as the primitive analysis object, rather than cell types. For example, Slide-seq is not 
useful for cell-type discovery or for differential expression between cell types: if one examines the 
differential expression between astrocytes in one location and astrocytes in another location, for 

M
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example, the genes one finds are typically contaminating genes from adjacent cell types. Moreover, 
because Slide-seq data is relatively sparse, most beads of a given cell type will fail to display most 
of the key markers for that cell type. However, Slide-seq has high statistical power for detecting 
spatial patterns of gene expression in a cell-agnostic way de novo. For example, if there are only 4 
occurrences of a particular gene, but all 4 occurrences are immediately adjacent to each other on 
the puck, that is an extremely strong statistical signal, regardless of the cell-types of the beads on 
which they occur. This realization led me to develop the other two core analysis algorithms 
(besides NMFReg) that appear in the paper: the spatially significant gene calling algorithm, which 
detects spatially non-random distributions of gene expression, and the gene overlap algorithm, 
which determines when two genes are spatially correlated. These two algorithms served in turn as 
the basis for the analysis in Figures 3 and 4. 
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Summary 
Spatial positions of cells in tissues strongly influence function, yet a high-throughput, genome-wide 
readout of gene expression with cellular resolution is lacking. We developed Slide-seq, a method 
for transferring RNA from tissue sections onto a surface covered in DNA-barcoded beads with 
known positions, allowing the locations of the RNA to be inferred by sequencing. Using Slide-seq, 
we localized cell types identified by scRNA-seq datasets within the cerebellum and hippocampus, 
characterized spatial gene expression patterns in the Purkinje layer of mouse cerebellum, and 
defined the temporal evolution of cell-type-specific responses in a mouse model of traumatic brain 
injury.  These studies highlight how Slide-seq provides a scalable method for obtaining spatially 
resolved gene expression data at resolutions comparable to the sizes of individual cells. 

Introduction 
The functions of complex tissues are fundamentally tied to the organization of their resident cell 
types. Multiplexed in situ hybridization and sequencing-based approaches can measure gene 
expression with subcellular spatial resolution (9, 10), but require specialized knowledge and 
equipment, as well as the upfront selection of gene sets for measurement. By contrast, technologies 
for spatially encoded RNA-sequencing with barcoded oligonucleotide capture arrays are limited to 
resolutions in the hundreds of microns (156), which is insufficient to detect important tissue 
features. 

Results 
To develop Slide-seq for high-resolution genome-wide expression analysis, we first packed uniquely 
DNA-barcoded 10 µm microparticles (‘beads’) —similar to those used in the Drop-seq approach to 
scRNA-seq (25)—onto a rubber-coated glass coverslip forming a monolayer we termed a “puck” 
(Figure 10-1).  We found that each bead barcode sequence could be uniquely determined via 
SOLiD sequencing-by-ligation chemistry (Figure 4-1A, Figure 10-1) (157, 158) (see Methods).  We 
next developed a protocol wherein 10 µm fresh-frozen tissue sections were transferred onto the 
dried bead surface via cryosectioning (see Methods, Chapter 10). mRNA released from the tissue 
was captured onto the beads for preparation of 3’-end, barcoded RNA-seq libraries (25) (Figure 
4-1B). Clustering of individual bead profiles from a coronal section of mouse hippocampus (see 
Methods, Chapter 10) yielded assignments reflecting known positions of cell types in the tissue 
(Figure 4-1C). Very fine spatial features were resolved, including the single-cell ependymal cell 
layer between the central ventricle and the habenula in the mouse brain (Figure 4-1C, inset). 
Moreover, Slide-seq could be applied to a range of tissues, including the cerebellum and olfactory 
bulb, where layered tissue architectures were immediately detectable (Figure 4-1D, Figure 10-2), 
as well as liver and kidney, where the identified clusters revealed hepatocyte zonation patterns 
(159) and the cellular constituents of the nephron, respectively. Slide-seq on postmortem human 
cerebellum was also successful in capturing the same architectural features observed in the cognate 
mouse tissue (Figure 10-3).  Expression measurements by Slide-seq agreed with those from bulk 
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mRNA-seq and scRNA-seq, and average mRNA transcript capture per cell was consistent across 
tissues and experiments (Figure 10-4). Finally, we found no detectable difference in the dimensions 
of brain structures observed in Slide-seq and in FISH (Figure 10-5), implying that mRNA is 
transferred from the tissue to the beads with minimal lateral diffusion. 

To map scRNA-seq cell types onto Slide-seq data, we developed a computational approach called 
Non-negative Matrix Factorization Regression (NMFreg) that reconstructs expression of each 
Slide-seq bead as a weighted combination of cell-type signatures defined by scRNA-seq (Figure 
4-2A). Application of NMFreg to a coronal mouse cerebellar puck recapitulated the spatial 
distributions of classical neuronal and non-neuronal cell types (24), such as granule cells, Golgi 
interneurons, unipolar brush cells, Purkinje cells, and oligodendrocytes (Figure 4-2B, Figure 
10-6A). The mapping by NMFreg was found to be reliable across a range of factor numbers and 

 

Figure 4-1: High-resolution RNA capture from tissue by Slide-seq. (A) Left: Schematic of array 
generation. A monolayer of randomly deposited, DNA barcoded beads (termed a “puck”) is spatially 
indexed by SOLiD sequencing. Top Right: A representative puck with sequenced barcodes shown in 
black. Bottom Right: A composite image of the same puck colored by the base calls for a single base of 
SOLiD sequencing. (B) Schematic of the sample preparation procedure developed for Slide-seq. (C) Top 
left: tSNE representation of Slide-seq beads from a coronal mouse hippocampus slice with colors 
indicating clusters. Right: the spatial position of each bead is shown, colored by the cluster assignments 
shown in the tSNE. Bottom left: Inset indicating the position of a single-cell-thickness ependymal cell 
layer (black arrow). (D) As in (C), but for the indicated tissue type (see Figure 10-2 for clustering and 
cluster identities). All scale bars 500 μm. 
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random restarts (Figure 10-6B,C). We found that 65.8% +/- 1.4% of beads could be identified 
with a single cell type (see Methods, Chapter 10), whereas 32.6% +/- 1.2% showed mRNA from 
two cell types (mean ± std, N=7 cerebellar pucks) (Figs. 2C, S7). The high spatial resolution of 
Slide-seq was key to mapping cell types: when data were aggregated into larger feature sizes, cell 
types in heterogeneous regions of tissue could not be resolved (Fig. S8). Slide-seq collects a 2D 
spatial sample of 3D tissue volumes, thus caution should be taken when making absolute counting 
measurements throughout the 3D volume in the absence of proper stereological controls and 
sampling methods (160).  

We first sequenced pucks capturing 66 sagittal tissue sections from a single dorsal mouse 
hippocampus (20 billion paired-end reads over 1.5 million barcoded beads), covering a volume of 
39 cubic millimeters, with roughly 10 µm resolution in the dorsal-ventral and anterior-posterior 
axes, and ~20 µm resolution (alternate 10 µm sections) in medial-lateral axis (Figure 10-9A-D). 

 

Figure 4-2: Localization of cell types in cerebellum and hippocampus using Slide-seq. (A) 
Schematic for assigning cell types from scRNA-seq datasets to Slide-seq beads using NMF and NNLS 
regression (NMFreg). (B) Loadings of individual cell types, defined by scRNA-seq cerebellum (24) on 
each bead of one 3 mm-diameter coronal cerebellar puck (red, cell type location, gray, Purkinje loadings 
plotted as a counterstain). Other cell types are in Figure 10-6. (C) Left: Number of cell types assigned 
per bead (Figure 10-7). Right: The number of beads called as each scRNAseq-defined cell type for 
cerebellar pucks (mean ± std. N=7 pucks). (D) Projections of hippocampal volume with NMFreg cell 
type calls for CA1 (green), CA2/3 (blue) and dentate gyrus (Red). Top left: Sagittal projection. Top 
right: Coronal projection. Bottom left: Horizontal projection. Bottom right: axis orientations for each of 
the projections. (E) Composite image of metagenes for six different cell types.  All scale bars 250 µm. 
All metagenes are listed in Table 10-2. 
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Using NMFreg, 770,000 beads in the volume could be associated with a single scRNA-seq-defined 
cell type. We computationally co-registered pucks along the medial-lateral axis, allowing for 
visualization of the cell types and gene expression in the hippocampus in three dimensions (Figure 
4-2D, Figure 10-9E,F). We plotted metagenes comprised of previously defined markers (24) for the 
dentate gyrus, CA2, CA3, a subiculum subpopulation, an anteriorly localized CA1 subset 
(exemplified by the marker Tenm3) and cells undergoing mitosis and neurogenesis.  The 
metagenes were highly expressed and specific for the expected regions (Figure 4-2E), confirming 
the ability of Slide-seq to localize both common cell-types as well as finer cellular subpopulations. 
The entire experimental processing of these 66 pucks (excluding puck generation) required ~40 
person-hours (see Methods, Chapter 10), and only standard experimental apparatus. 

We then developed a nonparametric, kernel-free algorithm to identify genes with spatially non-
random distribution across the puck (Figure 10-10) (see Methods, Chapter 10). Application of this 
algorithm to coronally sliced cerebellum identified Ogfrl1, Prkcd and Atp2b1 as highly localized to 
a region just inferior to the cerebellum (Fig. S11A). We found Ogfrl1 in particular to be a specific 
and novel marker for PV interneurons in the molecular and fusiform layers of the dorsal cochlear 
nucleus (Figure 10-11B), likely the cartwheel cells of the dorsal cochlear nucleus (161, 162).  Our 
algorithm also identified Rasgrf1 as expressed only in granule cells anterior to the primary fissure 
(Figure 10-11C, cyan, Figure 10-11D, left) (38), and further analysis revealed four previously 
uncharacterized genes expressed only posterior to the primary fissure (see Methods, Chapter 10) 
(Table 10-2, Figure 10-11C, yellow, Figure 10-11D, right).  

The cerebellum is marked by parasagittal bands of gene expression in the Purkinje layer that 
correlate with heterogeneity in Purkinje cell physiology and projection targets (163–166). Several 
genes, including Aldoc (also known as the antigen of the Zebrin II antibody) show similar or 

 

Figure 4-3: Identification of novel variation in cerebellar gene expression by Slide-seq. (A) 
Heatmap illustrating the separation of Purkinje-expressed genes into two clusters by spatial gene 
correlation. The i,jth entry is the number of genes found to overlap with both gene i and j in the 
Purkinje cluster (see Methods, Chapter 10). (B) For genes with significant expression (p<0.001, Fisher 
exact test) in the nodulus-uvula region (see Methods, Chapter 10), the fraction of reads localized to the 
nodulus/uvula and to the VI/VII boundary is shown. Pcp4, a ubiquitous marker for Purkinje cells, is in 
gray. (C) An Aldoc metagene in cyan. A Cck metagene in red. (D) A H2-D1 metagene in yellow. A 
Hspb1 metagene in blue. All scale bars show 250 µm. All metagenes are listed in Table 10-2. 
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complementary parasagittal expression (165, 167, 168) but the extent of this form of expression 
variation is unknown, and these patterns have not previously been identified in single-cell 
sequencing studies. Using the spatial information afforded by Slide-seq, we identified 669 spatially 
non-random genes in the Purkinje layer (Table 10-2), of which 126 appeared either correlated or 
anticorrelated with the Zebrin pattern, using Aldoc and Plcb4 as markers of Zebrin II(+) or 
Zebrin II(-) bands, respectively (Figure 4-3A). Among the anticorrelated genes were four ATPases 
and four potassium channels, including some which may explain differences in electrophysiology 
between Zebrin II(+) and Zebrin II(-) Purkinje neurons (Table 10-2). Moreover, we identified 
several other patterns of spatial gene expression, besides the Zebrin pattern. While most genes 
identified displayed a pattern consistent with Zebrin II staining (Figure 4-3B,C), several were 
exclusively expressed in or excluded from the vestibulocerebellar region (lobules IX and X) (169, 
170) (Figure 4-3D, Table 10-2), confirming that lobules IX and X have a distinct program of gene 
expression. Still other genes showed either exclusive expression in (e.g. B3galt5 (171)) or exclusion 
from (e.g. Gnai1) lobules IX/X and VI/VII (Figure 10-11E,F), suggesting that these regions might 
share a pattern of gene expression, despite the disparate cognitive roles associated with them 
(172). Finally, although only Purkinje cells have previously been associated with the Aldoc 
pattern, we found that Mybpc1, a Bergmann cell marker previously only studied in the context of 
muscle, appears in both Slide-seq (Figure 10-11G) and in situ data (Figure 10-11H) to have a 
Zebrin pattern of expression. We thus conclude that the banded gene expression patterns divide 
many cerebellar cell types, including Purkinje cells, Bergmann glia, and granule cells, into 
spatially defined subpopulations, which was not indicated in previous single-cell sequencing studies 
(24, 173).  
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Finally, we applied Slide-seq to quantify the brain’s response to traumatic brain injury over time. 

 

Figure 4-4: Slide-seq identifies local transcriptional responses to injury. (A)  Top: All mapped beads 
for a coronal hippocampal slice from a mouse sacrificed 2 hours after injury, with circle radius 
proportional to transcripts. Bottom: genes marking the injury. (B) As in (A), for a mouse sacrificed 3 
days after injury. Top and middle right: DAPI image of an adjacent slice. Panels with black 
backgrounds show NMFreg cell types as density plots. Scale bar: 250 µm (see Methods, Chapter 10). 
(C) As in (B), for a mouse sacrificed 2 weeks following injury. Bottom scale bar: 500 µm. (D) Spatial 
density profiles for the puck in (B) (see Methods, Chapter 10). (E) Spatial density profiles for the puck 
in (C). Lyz2 is plotted as a marker of macrophages. The vertical axis in (D) and (E) represents cell-type 
density in arbitrary units (see Methods, Chapter 10). (F) The thickness of the features in (D) and (E) 
(mean ± std., N=6 for scar, N=6 for penetration, N=3 for mitosis layer). (G-J) Gene ontology-derived 
metagenes for the puck in (B) (top) or (C) (bottom). Warmer colors correspond to greater metagene 
counts. (K) The IEG metagene (Table S2) for two 2-week pucks. Circular images in (A-C) refer to the 
scale bar in (A). All scale bars for images with blue backgrounds 500 µm. Red arrows indicate the 
injury. 
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Cortical injuries were visualized in Slide-seq data by the presence of hemoglobin transcripts 2 
hours after the injury (Figure 4-4A), or by transcripts of Vim, Gfap, and Ctsd at 3 days and 2 
weeks after the injury (Figure 4-4B,C). Vim, Gfap, and Ctsd were chosen because they are known 
markers of the astrocytic (Vim and Gfap) or microglial (Vim and Ctsd) responses that were found 
to be highly upregulated at the injury in the Slide-seq data (Figure 10-13). We applied an 
algorithm to identify all genes that correlate spatially with those transcripts. At the 2-hour 
timepoint, only Fos and rRNA (174) were found to correlate spatially with the injury (Figure 
4-4A, Figure 10-14). By contrast, at the 3-day timepoint, we found microglia/macrophages-
assigned beads localized to the injury, bordered by a distinct layer of cells (thickness: 92.4 µm ± 
11.3 µm, mean ± sterr, N=3) expressing mitosis-associated factors, followed by a layer of 
astrocyte-assigned beads (Figure 4-4D). Finally, at the 2-week timepoint, we observed 
microglia/macrophage-assigned beads filling the injury, surrounded by an astrocytic scar 
(thickness: 36.6 µm ± 13.4 µm, mean ± sterr, N=6), with evidence of microglia (but not 
macrophages) penetrating 39 µm ± 17.8 µm (mean ± sterr, N=6) through the astrocytic scar and 
into neuron-rich regions (Figure 4-4E,F). Macrophages were visualized using Lyz2, a specific 
marker for macrophages and granulocytes, however, we interpret this as a marker of macrophages, 
because other granulocyte-specific markers were not found to colocalize with Gfap, Ctsd, and Vim. 

In order to investigate other changes in gene expression between the 3-day and 2-week timepoints, 
we identified genes that correlated spatially with Vim, Gfap, and Ctsd at the 3-day timepoint or 
the 2-week timepoint (see Methods, Chapter 10). Applying gene ontology analysis to these gene 
sets revealed enrichment of annotations relating to chromatid segregation, mitosis, and cell 
division at the 3-day timepoint (Figure 4-4G), and relating to the immune response (Figure 4-4H), 
gliogenesis (Figure 4-4I) and oligodendrocyte development (Figure 4-4J) at the 2-week timepoint. 
This suggests that cell proliferation occurs in the first few days following injury, and transitions to 
differentiation on the order of weeks. For example, although the degree to which oligodendrocyte 
progenitor cells (OPCs) differentiate into oligodendrocytes following a focal gray matter injury is 
controversial (175), we confirmed that both Sox4 and Sox10 localize to the region surrounding the 
injury at the 2 week timepoint, indicating the presence of immature oligodendrocytes (Figure 
10-15). We also discovered evidence that several immediate early genes, including highly neuron-
specific genes such as Npas4 (Table 10-2), are upregulated in a region of width 0.72 mm ± 0.19 
mm (mean ± sterr, N=4 measurements) around the injury at both the 3-day and the 2-week 
timepoints (176–178) (Figure 4-4K, Table 10-2), suggesting persistent effects of the injury on 
neural activity in a large area around the injury. 

Here we demonstrate that Slide-seq enables the spatial analysis of gene expression in 
frozen tissue with high spatial resolution and scalability to large tissue volumes. Slide-seq is easily 
integrated with large-scale scRNA-seq datasets and enables discovery of spatially defined gene 
expression patterns in normal and diseased tissues.  The primary cost of Slide-seq is the cost of 
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short read sequencing, which is ~$200-$500 for the pucks presented here. As the cost of sequencing 
drops further, we expect to be able to scale Slide-seq to entire organs or even entire organisms.  
We anticipate that Slide-seq will play important roles in positioning molecularly defined cell types 
in complex tissues, and defining new molecular pathways involved in neuropathological states. 
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Chapter 5   
Protein Sequencing 

 

n the winter of 2015, inspired by a series of meetings with Adam Marblestone, Ed Boyden, 
and others, I took up the question of how one could directly infer the sequence of proteins at 
the single molecule level. Although mass spectrometry could in principle be applied to single 

molecules (179), the most sensitive protein sequencing methods to date require tens or hundreds of 
thousands of copies. This approach, which I formulated with inspiration from Adam Marblestone, 
takes advantage of a set of N-terminal amino acid binders identified by Jim Havranek and Ben 
Borgo at WUSTL (180). My key realization was that although the binders were mostly not 
specific for any particular N terminal amino acid, their binding spectra were sufficiently different 
from each other that, by observing the kinetics of each binder for a given peptide, one could likely 
infer the identity of the N terminal amino acid. 

This research was conducted entirely from January 2015 to March 2015. After the initial 
theoretical research, Andrew Payne, Dan Oran and I tried to implement our ideas experimentally. 
Our efforts failed, primarily due to lack of experience (I was in my first year, and Andrew and 
Dan were not even graduate students yet). We were afraid of being scooped on the experiments, 
so the theoretical work was not published until March 2019. As of the publication of this thesis, 
there has still been practically no movement in this field, despite numerous theoretical proposals 
(181–183), one major experimental report (184), and a company (Encodia Inc.) that appears to 
have been working in this space for more than 5 years. It is very challenging to distinguish the 
amino acids from each other on any chemical basis – it is remarkable that cells have evolved 
enzymes to do it –, and the standard challenges of single-molecule experiments (e.g. nonspecific 
binding and photobleaching) must likewise be overcome. Nonetheless, I believe that the method 
laid out here could be made to work, either using the published NAABs or using a dedicated, 
evolved or engineered set. 

That this research was published is entirely due to Adam Marblestone, who unearthed the 
manuscript in early 2018 and proposed to me and Ed that we submit it. Without Adam’s 
proposal, it would have remained buried.  

I
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Summary 
We propose and theoretically study an approach to massively parallel single molecule peptide 

sequencing, based on single molecule measurement of the kinetics of probe binding to the N-
termini of immobilized peptides (180). Unlike previous proposals, this method is robust to both 
weak and non-specific probe-target affinities, which we demonstrate by applying the method to a 
range of randomized affinity matrices consisting of relatively low-quality binders. This suggests a 
novel principle for proteomic measurement whereby highly non-optimized sets of low-affinity 
binders could be applicable for protein sequencing, thus shifting the burden of amino acid 
identification from biomolecular design to readout. Measurement of probe occupancy times, or of 
time-averaged fluorescence, should allow high-accuracy determination of N-terminal amino acid 
identity for realistic probe sets. The time-averaged fluorescence method scales well to weakly-
binding probes with dissociation constants of tens or hundreds of micromolar, and bypasses 
photobleaching limitations associated with other fluorescence-based approaches to protein 
sequencing. We argue that this method could lead to an approach with single amino acid 
resolution and the ability to distinguish many canonical and modified amino acids, even using 
highly non-optimized probe sets. This readout method should expand the design space for single 
molecule peptide sequencing by removing constraints on the properties of the fluorescent binding 
probes. 

Introduction: 
Massively parallel DNA sequencing has revolutionized the biological sciences (185, 186), but no 
comparable technology exists for massively parallel sequencing of proteins. The most widely used 
DNA sequencing methods rely critically on the ability to locally amplify (i.e., copy) single DNA 
molecules—whether on a surface (187), attached to a bead (188), or anchored inside a hydrogel 
matrix (189)—to create a localized population of copies of the parent single DNA molecule. The 
copies can be probed in unison to achieve a strong, yet localized, fluorescent signal for readout via 
simple optics and standard cameras. For protein sequencing, on the other hand, there is no protein 
‘copy machine’ analogous to a DNA polymerase, which could perform such localized signal 
amplification. Thus, protein sequencing remains truly a single molecule problem. While true single 
molecule DNA sequencing approaches exist (190–192), these often also rely on polymerase-based 
DNA copying, although direct reading of single nucleic acid molecules is beginning to become 
possible with nanopore approaches (193) that may be extensible to protein readout (194–196) 
Thus, the development of a massively parallel protein sequencing technology may benefit from 
novel concepts for the readout of sequence information from single molecules. 

Previously proposed approaches to massively parallel single molecule protein sequencing (181, 182, 
197) utilize designs that rely on covalent chemical modification of specific amino acids along the 
chain. Such chain-internal tagging reactions are currently available only for a small subset of the 
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20 amino acids, and they have finite efficiency. Thus, such approaches would likely not be able to 
read the identity of every amino acid along the chain. 

An alternative approach to protein sequencing (180, 198–200) is to use successive rounds of 
probing with N-terminal-specific amino-acid binders (NAABs) (180). Recent studies have proposed 
that proteins derived from N-terminal-specific enzymes such as aminopeptidases (201), or from 
antibodies against the PITC-modified N-termini arising during Edman degradation (202), could be 
used as NAABs for protein sequencing. Yet designing or evolving highly specific, strong N-
terminal binders to all 20 amino acids (and more if post-translational modifications, e.g., 
phosphorylation, are considered) is a challenge. Rather than attempting to improve the properties 
of the NAABs themselves, we will introduce a strategy—which we term “spectral sequencing”—to 
work around the limitations of existing NAABs and enable single molecule protein sequencing 
without the need to develop novel binding reagents. 

Spectral sequencing measures the affinities of many low-affinity, relatively non-specific NAABs, 
collectively determining a “spectrum” or “profile” of affinity across binders, for each of the N-
terminal amino acids. This profile is sufficient to determine the identity of the N-terminal amino 
acid. Thus, rather than requiring individual binders to be specific in and of themselves, we will 
infer a specific profile by combining measurements of many non-specific interactions. The spectral 
sequencing approach measures the single molecule binding kinetics in a massively parallel fashion, 
using a generalization of Points Accumulation for Imaging in Nanoscale Topography (PAINT) 
techniques (203, 204) to N-terminal amino acid binders. A key advantage of this technique is that 
it overcomes photobleaching limitations previously observed with fluorescence-based single-
molecule protein sequencing methods (184). 

In what follows, we first derive the capabilities of single-molecule fluorescence based measurement 
of probe binding kinetics as a function of probe properties and noise sources. We then apply this 
analysis to the problem of sequencing proteins by measuring profiles of NAAB binding kinetics. 
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Using a range of randomized NAAB affinity matrices as well as an affinity matrix derived directly 

 

Figure 5-1: Identifying amino acids from kinetic measurements. Caption on next page. 
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from the existing measured NAAB kinetics (180), we estimate via simulation that the kinetic 
measurement scheme presented here could achieve 97.5% percent accuracy in amino acid 
identification over a total observation period of 35 minutes, even in the presence of errors arising 
from instrument calibration or variation in the underlying kinetics of the binders due to the effects 
of non-terminal amino acids. 

Problem Overview 
We consider the problem in which a set of peptides is immobilized on a surface and imaged using 
total internal reflection fluorescence (TIRF) microscopy. The surface must be appropriately 
passivated to minimize nonspecific binding (183, 200, 205–210). Moreover, an appropriate method 
must be selected for anchoring peptides to the surface. We assume that the reactive thiol group of 
cysteine is used to anchor peptides to the surface, but alternative methods, such as anchoring the 
C-terminal carboxylic acid to the surface, are also possible (184). In all that follows, we will 
assume that cysteine is used to anchor the peptides to the surface, in which case the sequencing 
ends at the anchored cysteine.  

(A) Example affinity matrix for a set of NAABs. The affinities of each of the 17 NAABs are shown for 
all 19 amino acids excluding cysteine, which is used to anchor the peptides to the surface. Reproduced 
from (180). (B) In the proposed measurement scheme, the target (green disk) is attached to a glass slide 
and is observed using TIRF microscopy. NAAB binders (brown clefts) bearing fluorophores (red dots) 
are excited by a TIRF beam (purple) and generate fluorescent photon emissions (red waves). (C) When 
a fluorophore is bound, there is an increase in fluorescence in the spot containing the target. 
Photobleaching of the fluorophore is indistinguishable from unbinding events, so it is important to use a 
dye that is robust against photobleaching. Plot shows an illustrative stochastic kinetics simulation 
incorporating Poisson shot noise of photon emission. A relatively strong binder is shown solely for 
purposes of illustration. In practice, the method relies on many measurements performed on weak 
binders. (D) The plot shows the result of a proposed kinetic measurement on an N-terminal amino acid 
using only two NAABs. The affinity of each N-terminal amino acid (black Xs, excluding cysteine) for 
the methionine-targeting and tryptophan-targeting NAABs are shown as a scatterplot, with the affinity 
for the met-targeting NAAB on the x axis and the affinity for the Trp-targeting NAAB on the y axis. 
Upon measuring the affinities for these NAABs against an unknown target undergoing sequencing, the 
unknown target can be identified with the amino acid with expected vector of affinities closest in the 
two-dimensional Euclidean space (higher-dimensional in a full experiment) to the measured affinity. The 
colored regions correspond to the regions within which a measured multi-NAAB affinity vector would be 
assigned to a given amino acid. As an example, a pair of measurements yielding the white star in D 
would identify the target as glycine. (E) The affinities of the glutamine and lysine targeting NAABs are 
shown for each of the amino acids. Some amino acids that are practically indistinguishable using the 
Met and Trp NAABs are easily distinguished using the Gln and Lys NAABs. As an example, if the 
same target amino acid described in D were measured with only the Gln and Lys NAABs, yielding the 
white star, we would identify the target as proline. However, combining these measurements with those 
for the white star in D with Met and Trp NAABs, we see that the true identity of the target is serine. 
Thus, the higher dimensional measurement of the amino acid using many different NAABs allows 
disambiguation of the amino acid identity. 
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The limited vertical extent of the evanescent excitation field of the TIRF microscope allows 
differential sensitivity to fluorescent molecules which are near the microscope slide surface, which 
allows us to detect NAABs that have bound to peptides on the surface. Existing sets of NAABS 
(e.g. (180)), derived from aminopeptidases or tRNA synthetases with affinities biased towards 
specific amino acids, have low affinity or specificity (Figure 5-1A), so one cannot deduce the 
identity of an N-terminal amino acid from the binding of a single NAAB. Instead, we propose to 
deduce the identity of the N terminal amino acid of a particular peptide by measuring optically 
the kinetics of a set of NAABs against the peptide. After observing the binding of each NAAB 
against the peptide, we will carry out a cycle of Edman degradation (211, 212), revealing the next 
amino acid along the chain as the new N-terminus, and then repeat the process. The process of 
observing binding kinetics with TIRF microscopy (Figure 5-1B,C) is similar to that used in Points 
Accumulation for Imaging of Nanoscale Topography (PAINT (203)), e.g., DNA PAINT (204). 
This process produces a high-dimensional vector of kinetically-measured affinities at each cycle 
(Figure 5-1D,E) that can be used to infer the N-terminal amino acid. 

This method, while powerful and potentially applicable for current NAABs, ultimately breaks 
down for probes with off-rates faster than the imaging frame rate, or for which the bound time is 
so short that only a small number of photons (e.g. less than 100, corresponding to 10% shot noise) 
is released while the probe is bound. While fast camera frame rates can be used, the system 
ultimately becomes limited in the achievable fluorescent signal to noise ratio, unless the 
measurements are averaged over long experiment times. To extend these concepts into the ultra-
weak binding regime, therefore, we propose not to measure the precise binding and unbinding 
kinetics but rather the time-averaged luminosity of each spot, which indicates the fraction of time 
a probe was bound. We find that this luminosity-based measurement scheme is highly robust and 
compatible with short run times. 

Results 
Our results are divided into three sections. We first consider the regimes of binder concentration 
and illumination intensity within which one would expect the proposed method to operate. We 
then discuss two possible methods for analyzing single molecule kinetic data. Finally, we perform 
simulations using the derived parameters and data analysis methods in order to estimate the 
sensitivity of the proposed sequencing method. 

Distinguishability of amino acids based on their NAAB binding profiles 
A set of binders (NAABs) is characterized by their affinities for their targets (e.g., the 20 amino 
acids), which can be expressed in the form of an affinity matrix. The affinity matrix 𝐴 is defined 
such that the 𝑖, 𝑗th entry of 𝐴 is the negative log affinity of the 𝑖th binder for the 𝑗th target: 

 𝒂𝒊,𝒋 = − 𝐥𝐨𝐠(𝒌𝑫) (20) 
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where 𝑘  is the dissociation constant (we define 𝜏  as the dissociation time). 

Throughout this paper, the values of the affinities encoded in the affinity matrix will be referred 
to as the reference values, to distinguish them from the measured values obtained in the 
experiment and from the true values, which may depend on environmental conditions but which 
are not known by the experimenter; the reference values are known and will be used in our 
computational process of identifying amino acids. As shown in Appendix A (Chapter 11), we 
estimate that it would be possible to determine the identities of the N terminal amino acids from 
affinity measurements with 99% accuracy, provided that the affinity measurements occur 
according to a distribution centered on the reference value with standard deviation no greater 
than 64% of the mean. 

Model Parameters 
In order to evaluate the feasibility of the kinetic measurement strategy, we designed a model to 
simulate the observation of NAAB binding and unbinding from a peptide target, using TIRF 
microscopy. In evaluating the kinetic measurement strategy, we must make assumptions about the 
relevant photophysical parameters. 

1. The rate 𝑅 of photons from a single fluorophore captured by the detector, per second. This 
is a product of numerous parameters specific to the experimental implementation, 
including the collection efficiency of the optical setup, the illumination intensity, the 
quantum efficiency of the fluorophore, and the quantum efficiency of the detector. We use 
realistic values in the range of 10,000 photons per second (204, 213–215). 

2. The mean number 𝑁  of photons that a fluorophore can emit before it photobleaches. 
Realistic numbers on the order of 𝑁 ∼ 10  have been reported for Atto647N (204). 

3. The pixel size. We will assume that peptides are anchored to the surface sparsely enough 
so that there is at most one peptide per pixel. We will further assume that each pixel 
collects light from a cylindrical region 300 nm in diameter and 100 nm in depth, 
corresponding to visible TIRF illumination. It is useful to bear in mind that a free 
fluorophore occupation number of 𝑛 ≈ 1 in every cylinder with diameter 300 nm and 
height 100 nm corresponds to a molar density of 235 nM. 

4. The background level. Each pixel collects some amount of background light. We draw a 
distinction between transient emission sources (such as diffusing fluorophores) and 
constant sources of background photons, such as autofluorescence and excitation of 
fluorophores in the bulk by first- and higher-order beams. Transient emission sources are 
modeled, but we decline to model autofluorescence and bulk excitation, because previous 
studies have shown that the contribution of those sources are small compared to the 
fluorescence of fluorophores excited by the zeroth order beam (204). 
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5. The free NAAB concentration, 𝑛 . The choice of 𝑛  is up to the experimenter and 
may be chosen differently for different NAABs. It will need to be optimized to maximize 
the dynamic range of the 𝑘  readout experiment. 

Methods of Data Analysis 
A single-molecule experiment using TIRF yields a time series such as that shown in Figure 5-2A. 
We now discuss the two primary options for extracting the kinetics from this data and the 
experimental conditions that are optimal for each scheme, given the constraints discussed above. 

Occupancy Measurements 

 

Figure 5-2 Two types of affinity measurements using TIRF microscopy.  (A) A measurement 
performed using the proposed scheme yields a fluorescence intensity trace where periods of high intensity 
correspond to the target being bound and periods of low intensity correspond to the target being free. 
The affinity of a binder against the target may then be determined in two ways, either via occupancy 
measurements or via luminosity measurements. (B) An occupancy measurement is performed “along the 
time axis,” by calculating 𝒌𝐨𝐧 from the average time between binding events, and 𝒌𝐨𝐟𝐟 from the average 
length of binding events. (C) On the other hand, a luminosity measurement is performed “along the 
brightness axis,” by calculating 𝒌𝑫 directly from the average luminosity of the target over the whole 
observation period. (D) We validated our simulation by applying occupancy measurements to determine 
𝒌𝐨𝐧 and 𝒌𝐨𝐟𝐟 from simulated data. The parameters used here were identical to those used in the 
production of Fig 2a in (204). See text for symbol definitions. 
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The first measurement, used commonly in the field of single molecule kinetics (204, 216), relies on 
detecting changes in the occupancy state of the target. The measurement scheme is depicted 
schematically in Figure 5-2B. This measurement is performed “along the time axis,” in the sense 
that it relies on temporal information—when probes bind and unbind—and is relatively insensitive 
to analog luminosity information beyond that needed to make these digital determinations.  

In this method, the parameters of interest are the free NAAB concentration 𝑛  and the frame 
rate, 𝑓 = 1 𝜏⁄ . The upper limit on the dynamic range of this method is set by the frame rate, 
i.e., 

 𝝉𝐨𝐛𝐬 ≪ 𝟏/𝒌𝐨𝐟𝐟 (21) 

On the other hand, the lower bound on the dynamic range is set by the duration of the 
experiment 𝑇 , via the requirement that 

 𝑻𝐞𝐱𝐩 ≫ 𝟏/𝒌𝐨𝐟𝐟 (22) 

so that unbinding events can also be observed, and also that 

 𝑻𝐞𝐱𝐩 ≫ 𝟏/(𝒌𝐨𝐧𝒄) (23) 

so binding events can be observed. For a value of 𝑘  between 10 M s  and 10 M s  (e.g. 
(204, 217)) and a concentration on the order of 100 nM, this requirement implies that an 
experiment time of at least 100 seconds is necessary in order to see several binding events with 
high probability. In addition, we will choose 𝑓 = 100 Hz for this measurement modality, which 
then implies a dynamic range of roughly 5 orders of magnitude in 𝑘 . The values of 𝑘  that can 
be discerned are also constrained by photobleaching and by the background. Specifically, if 𝑅 is 
the rate of photon detection, 𝑁  is the mean number of detected photons emitted by the 
fluorophore before bleaching, and 𝐵 is the mean rate of background photon detection (due to 
camera noise, autofluorescence, etc.), then we also have 

 
𝑹

𝑩
≫ 𝒌𝐨𝐟𝐟 ≫

𝑹

𝑵𝒒
 (24) 

The value of 𝑘  is determined in this modality as follows. If the binding and unbinding events 
may be identified, then one may determine the average binding time 𝑇  and the average time 
between binding events 𝑇 , which we will refer to as the inter-event time. If photobleaching may 
be neglected, then we have 

 𝒌𝐨𝐟𝐟 =
𝟏

𝑻𝒃
  (25) 

and 



68 
 

 𝒌𝐨𝐟𝐟 =
𝟏

𝑻𝒊𝒄
  (26) 

where 𝑐 is the free binder concentration. Thus, 

 𝒌𝑫 =
𝑻𝒊

𝑻𝒃
𝐜  (27) 

Additionally, if the on-rate 𝑘  is known, then it is possible to determine 𝑘  even in the presence 
of photobleaching. (See Appendix C, Chapter 11, for details.) 

Luminosity Measurements 
An alternative to the occupancy-time measurements described above involves deducing 𝑘  directly 
from the fraction 𝑓  of time that the target is bound by a probe. This quantity may in turn be 
deduced from the average luminosity of the spot containing the free binder over the period of 
observation, as depicted in Figure 5-2C. Whereas occupancy measurements are performed “along 
the time axis,” neglecting luminosity information, luminosity measurements are performed “along 
the luminosity axis,” neglecting temporal information about the series of binding and unbinding 
events. Because it does not attempt to track individual binding and unbinding events, this method 
is particularly suited to measurements of weak binders performed at high background 
concentrations, where binding and unbinding events may occur faster than the camera frame rate. 
Moreover, this method relies on each NAAB of a given type having approximately the same 
brightness, which could be achieved using a high-efficiency method for monovalently labeling the 
NAAB N- or C-terminus (218, 219). 

If the target is bound a fraction 𝑓  of the time, then the dissociation constant is given by 

 𝒌𝑫 =
𝟏 − 𝒇𝑩

𝒇𝑩
𝒄  (28) 

where 𝑐 is the background binder concentration. We denote by 𝑆 the average brightness of the 
spot when a fluorescent binder is attached to the target, and by 𝑁 the average brightness of the 
spot when the target is free. Neglecting photobleaching, the average brightness of the spot over 
the whole experiment is given by 

 𝑴 = 𝒇𝑩𝑺 + (𝟏 − 𝒇𝑩)𝑵  (29) 

If 𝑆 and 𝑁 are known, then 𝑓  may thus be deduced directly from the measured photon rate 𝑀 
averaged over the entire experiment, via 

 𝒇𝑩 =
𝑴 − 𝑵

𝑺 − 𝑵
  (30) 

𝑆 and 𝑁 can be measured directly for example by anchoring NAABs sparsely to a surface and 
measuring the brightness of the resulting puncta (to deduce 𝑆), or puncta-free regions (to measure 
𝑁). 
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One significant advantage of this method is that the observation period 𝜏  can be chosen to be 
arbitrarily long by averaging the photon counts of many successive frames (i.e., we have 𝜏 =

𝑇 . In practice, we will use 𝜏 = 100 s. With this value, we can use a relatively high 
concentration of 2 μM (corresponding to 𝑛 ≫ 1) and a relatively low emission rate of 𝑅 =

10  s . The choice of a high NAAB concentration and low illumination intensity increases the 
dynamic range of the measurement scheme, by increasing the sensitivity both to small values of 
𝑘 , where photobleaching might be an issue, and to high values of 𝑘 , where observation of 
binding events may be an issue. However, unlike in the case of occupancy measurements, there is 
no way to account for photobleaching, if it occurs. Nonetheless, we do not expect photobleaching 
to have a significant impact on our results, since most of the NAABs have fairly high off-rates 
(180, 201). 

Simulations 
In order to determine whether the TIRF measurement scheme described above can be used to 
identify single amino acids on the N-termini of surface-anchored peptides, we simulated N 
terminal amino acid identification experiments. 

We first used a specific NAAB affinity matrix given in (180). Importantly, random affinity 
matrices (see Appendix E, Chapter 11) generated by permuting the values of the NAAB affinity 
matrix perform similarly well in residue-calling simulations. To generate the random affinity 
matrices with statistics matching the statistics of the NAAB affinity matrix, each matrix element 
was chosen by randomly sampling values from the NAAB affinity matrix of (180), without 
replacement. The simulations described here can therefore be assumed to apply to general 
ensembles of N-terminal binders with affinity value statistics similar to those displayed by these 
existing NAABs. 

In the simulations, there is assumed to be one free target in the volume analyzed, which is a 
cylinder of diameter 300 nm and height 100 nm as discussed above. Thus, we assume that 
peptides are arrayed sparsely enough on the surface that there is at most one peptide per 
diffraction-limited spot. The simulation considers each frame of the camera in succession, and 
models the number of photons registered at the camera. At the start of the simulation, or as soon 
as the target becomes free, a time 𝑇  is drawn from an exponential distribution with mean 
1 𝑘 𝑐⁄ , where 𝑐 is the concentration of binders. Once a time equal to 𝑇  has passed, the binder 
is considered occupied, and a time 𝑇  is drawn from an exponential distribution with mean 
1 𝑘⁄ . In addition, upon binding, a time 𝑇  is drawn from an exponential distribution 
with mean 𝑁 𝑅⁄ , where 𝑁  is the number of photons seen by the detector on average before the 
fluorophore bleaches and 𝑅 is the number of photons seen at the detector by a single fluorophore 
per second. For a dye like Atto 647N, we use 𝑁 = 1.2 × 10  (204). If the time 𝑇  is less 
than the time Tbound, the fluorophore ceases to emit photons after time 𝑇 . Within a 
given frame, the simulation tracks binding, unbinding, and photobleaching events, and computes 
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the number of signal photons detected by the camera by drawing from a Poisson distribution with 
mean 𝑅𝑇 , where 𝑅 is the single fluorophore photon rate and 𝑇  is the amount of time during 
the frame in which an unbleached fluorophore was attached to the target. 

In addition to background photons, the dominant contribution to noise in the simulation is 
expected to come from fluorophores attached to free binders that enter and leave the observation 
field (216). At the end of each frame, the simulation draws the number of free binders that enter 
the observation field during the frame from a Poisson distribution with mean 𝑛 𝑓⁄ , where 𝑓 is 
the frame rate and 𝑛  is the free binder occupation number of the frame. For each binder that 
enters the observation field, we draw a dwell time 𝑡 from an exponential distribution with mean 
𝜏  as calculated in Eq. (46) from diffusion theory (see Appendix B, Chapter 11), and a total 
photon contribution from a Poisson distribution with mean 𝑅𝑡. Finally, we calculate the detector 
shot noise from a Gaussian distribution with mean p and standard deviation equal to 0.1𝑝. 

Validation of the Simulation Pipeline 
To validate the simulations, we reproduced the DNA PAINT kinetics data collected by (204) 
using the parameters reported in that paper. There, values of 𝑘 ∼ 2.2 × 10  M s  and 𝑘 ∼

1.8 s  were reported. Although the photon rate was not directly reported in that paper, other 
papers using similar laser intensities and fluorophores reported photon rates on the order of 𝑅 ∼

10000 s  (213–215), so we used this value. From our simulated data, we were able to reproduce 
the measured off- and on-rates, as shown in Figure 5-2D. 

Measurements of 𝑘  
We next compared the ability of occupancy and luminosity measurements to determine the 
dissociation constant 𝑘  of binders for the target. 

Occupancy Measurements 
We performed 100 simulations of occupancy measurements for each of five different values of 𝑘  
between 10  M s  and 10  M s , which is consistent with standard values observed for 
antibodies (217), and for each of five different values of 𝑘  between 100 μM and 10 nM. We 
assumed a frame-rate of 100 Hz, detector read noise of 1 e , and a single-fluorophore detection 
rate of 10  s . The NAAB concentration was 300 nM, and the observation time was 𝑇 =

100 s. 

In order to analyze the data, we ran a control simulation in which 𝑘  was set to 0, so that no 
NAABs bound to the target. In practice, this calibration could be performed by observing a spot 
that does not have a target. From this, we calculated the mean and standard deviation of the 
noise on a per-frame basis. We then identified binding and unbinding events as follows. First, we 
identified all frames in which the photon count was more than 2 standard deviations above the 
noise mean. These frames will be referred to as “on” frames, whereas all other frames will be 
referred to as “off” frames. If three such “on” frames occurred in a row, the event was identified as 
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a binding event. The binding event was considered to continue until at least two “off”-frames in a 
row were observed. Once all the binding and unbinding events were identified, the average inter-
event time and the average binding time were calculated, and from these the kinetics were 
deduced (Fig 2A). 

The accuracy of the 𝑘  measurements was found to improve with increasing 𝑘 , and to improve 
with increasing 𝑘  for values of 𝑘  below 10 s  (Figure 5-3A). For values of 𝑘  significantly 
above 10 s , it was no longer possible to distinguish individual binding and unbinding events 

 

Figure 5-3: Two types of affinity measurements using TIRF microscopy.  (A) The accuracies of 
occupation measurements of 𝒌𝑫 are shown as a function of 𝒌𝑫 and 𝒌𝐨𝐧 for the simulation described in 
the text, with 𝑻𝐞𝐱𝐩 = 𝟏𝟎𝟎 𝐬. These measurements achieve high accuracy for 𝒌𝐨𝐧 ≥ 𝟏𝟎𝟒 𝐌 𝟏𝐬 𝟏 and 
𝒌𝐨𝐟𝐟 ≪ 𝟏𝟎𝟎 𝐬 𝟏. For values of 𝒌𝐨𝐟𝐟 on the order of 𝟏𝟎𝟎 𝐬 𝟏 (upper right-hand corner), the accuracy 
deteriorates significantly. (B) The accuracies of luminosity measurements of 𝒌𝑫 are shown as a function 
of 𝒌𝑫 and 𝒌𝐨𝐧. These measurements achieve high accuracy for 𝒌𝐨𝐧 ≥ 𝟏𝟎𝟓 𝐌 𝟏𝒔 𝟏 and 𝒌𝑫 ≥ 𝟏𝟎𝟎 𝐧𝐌. 
The heat map shown gives the fractional errors as a function of 𝒌𝑫 and 𝒌𝐨𝐧 for the simulation described 
in the text, with 𝑻𝐞𝐱𝐩 = 𝟏𝟎𝟎 𝐬. In contrast to occupation measurements, the accuracy of luminosity 
measurements does not deteriorate for very high values of 𝒌𝐨𝐟𝐟. (C) For luminosity measurements only, 
the mean fractional error in the measured value of 𝒌𝑫 is plotted as a function of the observation time for 
five different values of 𝒌𝑫. The line 𝒚 = 𝟏/𝒙 is plotted as a guide to the eye. For 𝒌𝑫 = 𝟏𝟎 𝐧𝐌 and 𝒌𝑫 =

𝟏𝟎𝟎 𝐧𝐌, the effects of photobleaching are evident at longer runtimes. (D) Also, for luminosity 
measurements only, the measured value of 𝒌𝑫 is plotted as a function of the actual value of 𝒌𝑫 for 8 
different values of the runtime. The performance of the algorithm improves dramatically for 𝑻𝐨𝐛𝐬 > 𝟐𝟓 𝐬. 
The line 𝒚 = 𝒙 is plotted as a guide to the eye. Error bars in C, D denote standard error over 100 trials. 
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from noise (Figure 5-3A, upper right-hand corner). Moreover, for values of 𝑘  below 10  M s , 
the condition 𝑇 ≫ 1 𝑘 𝑐⁄  was no longer satisfied. Finally, for very small values of 𝑘 , 
photobleaching limited the accuracy of the analysis. For 𝑘 > 10  M s  and 𝑘 ∼ 10 s , it 
was possible to obtain the correct value of 𝑘  to within approximately 5 − 10%. However, the 
accuracy deteriorated sharply for combinations of 𝑘  and 𝑘  deviating from these ideal 
conditions. 

Luminosity Measurements 
We then simulated luminosity measurements of 𝑘  using comparable parameters. Because these 
measurements depend only on the average luminosity over the entire experiment, the entire 
experiment was lumped into a single camera frame. In practice, however, the same results can be 
obtained by averaging over the photon counts of multiple frames. The photon detection rate was 
set to 𝑅 = 1000 s , and the free binder concentration was set to 2 μM. The photon rate of the 
off-state was determined first by running the simulation with the value of 𝑘  set to 0. The 
photon rate in the on-state was then determined by running the simulation with the value of 𝑘  
set to 10  M s , and the value of kD set to 10  M. Because the exposure time used in this 
experiment is very long compared to the dwell time of free binders in the observation field, it was 
assumed that all free binders that enter the observation field emit a number of photons equal to 
𝑅 𝜏  (i.e., the noise was taken to be approximately Poissonian), which substantially reduces 
the computational complexity of the algorithm. Once the average luminosity over the experiment 
was determined, the value of 𝑓  was deduced. 

For observation times shorter than 50 s, the analysis sometimes returns values of 𝑓  arbitrarily 
close to or greater than 1 or arbitrarily close to or less than 0. This can happen as a consequence 
of statistical error in the luminosity measurements, even in the absence of systematic error. For 
this reason, in order to avoid negative or outlandishly large values of 𝑘  from compromising the 
analysis, we chose the maximum value of 𝑓  to be equal to the value expected when 𝑘 = 1 nM, 
and we chose the minimum value of 𝑓  to be equal to the value obtained when 𝑘 = 10 mM. Any 
values of 𝑓  outside of this range were adjusted to the maximum or minimum value, 
appropriately. 

In order to enable comparison to the occupancy measurements, the simulation was run 100 times 
for each of five values of 𝑘  between 10  M s  and 10  M s  and for each of five values of 
𝑘  between 100 μM and 10 nM. The accuracy was found to be comparable to that obtained in the 
occupancy experiments (Figure 5-3A), except that the accuracy did not deteriorate for very high 
values of 𝑘  (Figure 5-3B, upper right-hand corner). For values of 𝑘  on the order of (or greater 
than) 10  M s  and values of 𝑘  greater than 1 μM, 𝑘  could easily be determined to within the 
accuracy condition required by Eq (37). 
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To ascertain the effect of 𝜏  on the accuracy, the simulation was run 100 times for each of the 
same 25 combinations of 𝑘  and 𝑘 , with 8 different values of 𝜏  between 1 s and 1000 s and 
a free binder population of 2 μM (Figure 5-3C). As expected, the accuracy was found to undergo a 
sharp transition when 𝜏  was on the order of 25 s, corresponding to 1 𝑘 𝑐⁄ ≪ 𝜏 . For values 
of 𝜏 > 25 s and values of 𝑘  greater than 1 μM, the error in the measurement of 𝑘  decreased 
like 1 𝜏⁄  (Figure 5-3C). For observation times greater than 25 s, the value of 𝑘  could be 
calculated with standard deviation less than 64% of the mean for values of 𝑘  on the order of or 
greater than 1 μM, although photobleaching leads to saturation and significant losses of accuracy 
for smaller values of 𝑘  (Figure 5-3D). 

Separately, to ascertain the effect of the free binder concentration on the accuracy, the simulation 
was run 1000 times on each of the same 25 combinations of 𝑘  and 𝑘 , with 𝜏 = 50 s at seven 
different values of the concentration between 10 nM and 5 μM. For values of 𝑘  such that 𝜏 ≫

1 (𝑘 𝑐)⁄ , the effect of increasing 𝑘  was found to be similar to the effect of increasing 𝜏_obs 
(data not shown). 

Identifying Amino Acids 
Because standard deviations in 𝑘  below 64% of the mean could consistently be achieved in the 
luminosity measurements across a broad range of values of 𝑘  and 𝑘 , it is reasonable to expect 
that luminosity measurements of NAAB binding kinetics with the affinity matrix in Figure 5-1A 
could allow for the identification of amino acids at the single molecule level. We thus simulated an 
experiment, using the luminosity measurement paradigm, in which a peptide with an unknown 
amino acid is attached to a surface, and is observed successively in multiple baths, each containing 
a single kind of fluorescent NAAB. 

Simulation of systematic errors. 
Two kinds of systematic error may confound identification of amino acids. The first kind of error, 
which we refer to as kinetic error, refers to the case in which the actual dissociation constant for a 
particular NAAB-amino acid pair is different from the expected value. This may arise due to 
issues such as the secondary structure or the identities of non-terminal amino acids. To simulate 
this, for each NAAB, the effective dissociation constant 𝑘  for the NAAB-amino acid pair was 
drawn from a normal distribution centered on the reference value 𝑘 , with standard deviation 
equal to 𝜎 𝑘 , where 𝜎  parametrizes the effect of non-terminal amino acids and other 
environmental factors on the dissociation constant. 

In addition, luminosity measurements are also sensitive to error in the calibration of the 
measurement apparatus, for example if the brightness of the bright and dark states is not known 
exactly. We refer to this kind of error as calibration error. The bright and dark states 𝑆 and 𝑁 
could likely be calibrated by doping in labeled reference peptides to the sample to be sequenced. 
Still, there may be some error in the measurements of 𝑆 and 𝑁. To simulate this kind of error, the 
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true calibration levels 𝑆 and 𝑁 were first determined as the luminosity of the bound and unbound 
states. The measured calibration levels 𝑆 and 𝑁 were then determined by drawing from a normal 
distribution with mean equal to 𝑆 and 𝑁 and with standard deviation equal to 𝜎 𝑆 and 𝜎 𝑁, 
respectively. The values of 𝜎  and 𝜎  will be given below in percentages. For a discussion of 
computational strategies for coping with calibration error, see Appendix D, Chapter 11. 

Amino acid identification. 
In this simulation, amino acids were randomly chosen from a uniform distribution. Binders were 
added to the solution at a concentration of 1 μM and the photon detection rate was set to 
1000 s . For each NAAB, effective values of the dissociation constant 𝑘 , the on-rate  𝑘 , the 
effective brightness 𝑅, and the calibration levels 𝑆 and 𝑁 were determined for the NAAB-amino 
acid pair. The spot containing the NAAB was then observed over a period of time 𝜏 , which 
ranged from 50 to 500 seconds, and the total number of photons observed was stored. This process 
was repeated for each NAAB, generating a vector �⃗� of observed photon counts.  

Analysis was performed by comparing the measured photon counts to the photon counts that 
would have been expected for each amino acid, as described above. For each NAAB-amino acid 
pair, the expected photon count was calculated from the NAAB concentration 𝑐, the reference 
value of 𝑘  and the measured calibration level 𝑆 and 𝑁, via 

 �⃗� =
𝒄

𝒄 + 𝒌𝑫
𝑺 + 𝟏 −

𝒄

𝒄 + 𝒌𝑫
𝑵  (31) 

The resulting expected photon counts were then assembled into a matrix 𝑊, such that the (𝑖, 𝑗)th 
element of 𝑊 is the photon count that one would have expected on the measurement of the 𝑖th 
NAAB if the target were the 𝑗th amino acid, given the calibration levels 𝑆 and 𝑁. Finally, the 
amino acid identity 𝐼  was determined by minimizing the norm between the vector of observed 
photon counts �⃗� and the columns of 𝑊, i.e., 

 𝑰𝐚𝐚 = 𝐚𝐫𝐠𝐦𝐢𝐧𝒌 �⃗� − �⃗�𝒌   (32) 

where 𝑤  is the 𝑘th column of 𝑊. In Figure 5-4A-C, the accuracy with which amino acids can be 
identified is shown as a function of the observation time and the systematic error, for a 1 μM free 
binder concentration. In the absence of systematic error, amino acids could be identified with 
greater than 99% accuracy after a 50 s observation. Moreover, the experiment also showed 
robustness against kinetic error up to the 25% level, with progressive deterioration in the 
measurement accuracy observed for values of 𝜎  above 25%. Calibration error was found to have 
the most substantial effect on the accuracy, with calibration errors on the order of 10% reducing 
the achievable accuracy below 90% even for an observation time of 250 s. The effects of 
calibration error on the accuracy could be substantially reduced by reducing the concentration of 
free binders (Figure 5-4D), which has the effect of increasing the gap between the 𝑆 and 𝑁. 
However, in order to preserve the requirement that 𝑇 ≫ 1 (𝑘 𝑐)⁄ , it is necessary to increase 
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the experiment length by a similar factor. (For this reason, a free NAAB concentration of 1 μM 
was used, rather than 2 μM as used above.) Moreover, this improvement comes at the cost of 

 

Figure 5-4: Identification of amino acids is robust against systematic error.  The fraction of amino 
acids incorrectly identified is plotted as a function of 𝑻𝐨𝐛𝐬 for four different values of the systematic 
calibration error 𝝈𝑪 and four different values of the systematic kinetic error 𝝈𝑲 (as described in the 
text). (A) In the absence of systematic error, measurements with 𝑻𝐨𝐛𝐬 = 𝟓𝟎 𝐬 result in correct amino 
acid identification more than 98% of the time. For 25% error in 𝒌𝑫, the accuracy drops to 97.5%, and if 
5% calibration error is added, it drops further to 92%. More than 5% systematic error in the calibration 
leads to very significant numbers of mistakes in amino acid identification. (B) With 𝑻𝐨𝐛𝐬 = 𝟏𝟎𝟎 𝐬, an 
accuracy of 97.5% was obtained for 25% error in 𝒌𝑫 and 5% error in the calibration. Axes for B, C, and 
D are the same as in A. (C) Increasing 𝑻𝐨𝐛𝐬 beyond 100 s at the same binder concentration leads to 
diminishing improvements in the accuracy. (D) The sensitivity to calibration error could be substantially 
reduced by decreasing the concentration of free binders to 𝟏𝟎𝟎 𝐧𝐌. However, this decreased 
concentration necessitates a longer runtime. E For 𝑻𝐨𝐛𝐬 = 𝟏𝟎𝟎 𝐬, plots are shown for each value of 𝝈𝑪 
and 𝝈𝑲, depicting the probability that a given target amino acid (on the horizontal axis) was assigned a 
particular identity (on the vertical axis). Off-diagonal elements correspond to errors. 
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increased sensitivity to systematic error in 𝑘 . If the calibration error can be kept below 5%, and 
if the systematic error in the kinetics can be kept below 25%, then our simulations indicate that it 
would be possible to identify amino acids with greater than 97.5% accuracy over an observation 
window of 100 s. 
Application to Randomized Affinity Matrices 
In order to determine whether the protein sequencing method proposed here is limited to the 
specific affinity matrix given in (180), we generated affinity matrices with comparable binding 
statistics by randomly shuffling the 𝑘  values in the NAAB affinity matrix. For 100 such random 

affinity matrices, we then performed 
identical simulations as in Figure 5-4E, 
assuming 5% calibration error and 25% 
kinetic error. To calculate the overall error 
rate for a given matrix, we summed the 
frequencies of incorrect residue calls (the off-
diagonal elements of the matrices in Figure 
5-4E). The overall error rate for the NAAB 
affinity matrix, calculated in this way, is 
0.0124, and the distribution of error rates 
across the random matrices is shown in 
Figure 5-5. Only one randomly generated 
affinity matrix had an error rate lower than 
the NAAB error rate. Nonetheless, it is clear 
that most affinity matrices with affinity 
statistics similar to the NAABs (180) would 
yield errors in the range of 1%-4%, and thus 
the sequencing method described here is 
generalizable to a range of similar N-
terminal amino acid binders. 

Discussion 
The calculations and simulations discussed above indicate that if the measurement apparatus can 
be calibrated with an accuracy of 5%, and if the reference values of 𝑘  can be kept within 25% of 
the true values, it is theoretically possible to determine the identity of an N-terminal amino acid 
with greater than 97.5% accuracy by measuring the kinetics of the NAABs against the target 
amino acid. Crucially, 𝑘  can be inferred just from the time-averaged local concentration of 
NAABs within the observation field, and thus the measurement can be performed at relatively 
high background binder concentrations, because it does not rely on being able to distinguish 
individual binding and unbinding events. 

 

Figure 5-5: Overall error rates for 100 random 
affinity matrices.  A histogram of the overall error 
rate, calculated as the sum of incorrect residue calls 
divided by the total number of residue calls over 
10000 trials, is plotted for 100 random affinity 
matrices. 
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Primary Uncertainties 
Three primary uncertainties exist regarding the validity of the simulations performed here. Firstly, 
our simulation did not incorporate the effects of non-specific binding of NAABs to the surface. 
However, non-specific binding will simply increase the level of background fluorescence, and 
numerous recent single-molecule imaging studies have demonstrated surface passivation techniques 
that minimize nonspecific background (204, 220). 

Secondly, the sequencing will take place in non-denaturing buffers, as is necessary for the NAABs. 
We anticipate that small, surface-anchored peptides derived by cleaving proteins will be accessible 
for NAAB binding, as has been shown previously, for example in the case of biolayer 
interferometry (180). However, some peptides may not be sequenceable in this method due to 
secondary structures or other idiosyncrasies. In addition, some uncertainty exists surrounding the 
value of 𝑁  for the organic dyes of interest to us, with values between 10  and 10  being reported 
(204, 221). However, we expect our method to be relatively robust to photobleaching due to the 
relatively low affinity and high off-rates of most of the NAABs. Moreover, it is possible that more 
photostable indicators such as quantum dots could be used in place of organic dyes. Note that 
with any labeling scheme, there will be some concentration of “dark NAABs” that are not labeled. 
We do not expect this to be a major issue for the detection scheme provided the total NAAB 
concentration is less than the dissociation constant (i.e., as long as the target is free most of the 
time). However, if this is an issue, several other strategies are available to ensure high-efficiency 
labeling of NAABs, for example expressing the NAABs as fusions to a fluorescent protein, or to a 
peptide tag or protein (e.g. the SNAP tag) that can be used to link the NAABs to small molecule 
fluorophores with high efficiency. Moreover, a high concentration of dark NAABs can always be 
compensated for by reducing the total NAAB concentration and increasing the measurement 
duration. Nonetheless, the concentrations reported for the simulations above should be regarded as 
the concentrations of successfully labeled “bright NAABs.” 

Calibration Error 
The luminosity measurement scheme is particularly sensitive to calibration error. This is because 
the brightness of puncta in the luminosity measurement scheme is used to infer the fraction 𝑓  of 
the time that the NAAB is bound, and when that fraction is close to 1 or close to 0, then small 
systematic errors in estimating 𝑓  can contribute to large errors in estimating 𝑘 . A more robust 
scheme might be to use the relative luminosity of different NAABs, which would then account for 
effects due to the structure of the peptide (e.g. aromatic residues such as tryptophan might 
contribute to quenching) and due to local variations in surface passivation. One straightforward 
way to do this would be to normalize the luminosities to the luminosity of a particular high-
affinity NAAB. 
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Parallelization 
We anticipate that the approaches discussed here could be parallelized in a way reminiscent of 
next-generation nucleic acid sequencing technologies, allowing for massively parallel protein 
sequencing with single-molecule resolution. In the ideal case, if a 64 megapixel camera were used 
with one target per pixel, we would have the ability to observe the binding kinetics of NAABs 
against approximately 10  protein fragments simultaneously. With an observation time of 100 
seconds per amino acid-NAAB pair, this corresponds to approximately 35 minutes of observation 
time per amino acid, or 5 days to identify a protein fragment of 200 amino acids in length. As the 
method is scaled up, the imaging time will come to dominate over the time needed for the fluidic 
and chemical steps. For example, one flow cell could be imaged while Edman degradation proceeds 
on a different flowcell. More generally, because imaging requires photon collection through a 
magnification system, and data transfer to a computer, it is likely to be largely serial, or parallel 
only up to the number of parallel cameras, whereas fluidic wash and reaction steps can occur in 
parallel over an entire large surface. Thus in the limit of acquiring data from large flow cells the 
chemical cycle time of the Edman degradation steps is negligible compared to the imaging time. 
On average, therefore, the sequencing method as a whole would have a throughput of 
approximately 20 proteins per second per 64-megapixel camera and its associated imaging setup. 

However, the throughput of the device could be improved dramatically if the readout mechanism 
were electrical, rather than optical. CMOS-compatible field-effect transistors have been developed 
as sensors for biological molecules (222–225). Moreover, electrical sequencing of DNA has been 
accomplished using ion semiconductor sequencing (226). Most recently, CMOS-compatible carbon 
nanotube FETs have been shown to detect DNA hybridization kinetics with better than 10 ms 
time resolution (227, 228). Similar CMOS-compatible devices have been adapted to the detection 
of protein concentrations via immunodetection (229). These systems have the added benefit that 
they sense from a much smaller volume than TIRF does (sometimes as small as ~10 cubic 
nanometers (228)), substantially reducing the impact of noise on the measurement. A single 5-inch 
silicon wafer covered in transistor sensors at a density of 16 transistors per square micron would 
be capable of sequencing 10  proteins simultaneously, corresponding to an average throughput of 
2,000,000 proteins per second on a single wafer, or one mammalian cell every 7 minutes. Such an 
approach could make use of dedicated integration circuitry to compute the average NAAB 
occupancy at the hardware level, greatly simplifying data acquisition and processing. Moreover, if 
the devices were made CMOS-compatible, they could be produced in bulk, greatly improving 
scalability. If the intrinsic contrast provided by the NAABs is insufficient for measurements with 
FETs, the NAABs can be further engineered to have greater electrical contrast, for example by 
conjugating them on the C-terminus to an electrically salient protein such as ferritin. A 
combination of electrical and optical readouts may also be desirable. Recently, CMOS-compatible 
single-photon avalanche diode imaging systems have been developed that are capable of detecting 
the presence of fluorophores on a surface without optics (230). 
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Finally, although the use of TIRF microscopy in the case studied here restricts the proposed 
approach to operate close to a reflecting surface, the use of thin sections or alternative 
microscopies could potentially allow such protein sequencing methods to operate in-situ inside 
intact cells or tissues. 

Conclusion 
We have shown that single molecule protein sequencing is possible using low-affinity, low-
specificity binding reagents and single molecule fluorescent detection. Achieving a high-quality 
single molecule surface chemistry and TIRF measurement setup will be a challenge, but if this can 
be achieved, our results show that a wide range of binding reagent families should be adaptable to 
single molecule protein sequencing. 
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Chapter 6   
Tickertape 

 

s observed most prominently by Adam Marblestone (30), there are numerous physical 
limitations that need to be overcome to enable a brain activity recording approach to 
scale to the whole brain. In 2011, Konrad Kording proposed that neural activity 

recording could be scaled to the whole brain level by engineering neurons to record their own 
activity, for example into some kind of a molecular recording device that he termed a “tickertape” 
(231). In the original scheme, it was thought that such a tickertape would operate using an error-
prone DNA polymerase with an error rate that was modulated by calcium, allowing the history of 
calcium in a cell to be inferred by DNA sequencing. However, experiments by Bradley Zamft and 
Adam Marblestone (232), as well as Keith Tyo’s lab (e.g. (233)), have indicated that it is 
challenging to endow polymerases with exquisite sensitivity to calcium ions. Moreover, all systems 
for DNA-based recording of cellular activity operate on timescales of days, which are too slow for 
recording any activity that would be relevant to neuroscience (232, 234–243). 

This project began with an idea by Fei Chen and Asmamaw Wassie, inspired by a paper showing 
the possibility of polyuridinylating RNAs to record protein-protein interactions (244). Fei and Oz 
had the idea to record neural activity into the poly(A) tail of mRNAs using poly(U) and poly(A) 
polymerases, which constitutively add Us and As to the 3’ ends of RNAs. The idea was that the 
poly(U) activity would be made calcium-dependent by modulating binding of the poly(U) protein 
to the RNA, while the poly(A) activity would be constitutive. I began work on the project, but we 
found it challenging to validate that the proteins were acting as desired. Moreover, we never 
detected RNAs with more than ~15 Us on their 3’ side, despite the fact that poly(U) proteins were 
known to add hundreds of Us to the poly(A) tail in vitro (245–251). We hypothesized that this 
was because polyuridinylation is a marker for RNA degradation in mammalian cells (252). 

In September 2017, Fei and I sat down to try to figure out how to accelerate our path to a 
tickertape paper. Fei was convinced that the way forward was to use the ADAR base editing 
protein, which had worked well for Jonathan Gootenberg and Omar Abudayyeh (253), but I 
insisted it would not be enough simply to make an integrator, and we didn’t know how to make a 
tickertape from the single base editor on its own. Together, we realized that it would be possible 
to create a tickertape by using the fact that there are many RNAs in each cell, and 
(counterintuitively) having the integrator integrate the constant function, i.e. time. If each RNA 
integrated the time since its own creation, we would be able to infer the timing of promoter 
activity from the ensemble of RNA integrators. Through work with Linlin Chen, this concept 
became the tickertape described below, which I expect will appear in print before the end of 2019.  

A
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Summary: 
Time varying transcriptional programs and cellular dynamics are often transient, and are difficult 
to monitor in their native context. Synthetic cellular memory devices which record biological 
signals in nucleic acid substrates would allow longitudinal study of cellular dynamics to be derived 
from a single endpoint measurement. Several recently published methods have succeeded in 
recording cell-state information into the sequence of DNA in living cells, but all such methods 
operate on timescales greater than the generation time of the cell (days to years, for mammalian 
cells), and are thus insufficient for recording transcriptional responses to perturbations, which 
typically place over hours. Here, we describe a molecular recorder (an “RNA Tickertape”) that 
encodes the absolute timings of transcriptional events in mammalian cells into the sequences of 
reporter RNA molecules. Whereas DNA recorders rely on relatively slow DNA repair mechanisms, 
our reporter relies on the fast RNA editing reaction of Adenosine Deaminase Acting on RNA 
(ADAR), and thus enables the timings and amplitudes of transcriptional events in single cells to 
be inferred from endpoint measurements with single-hour accuracy. We demonstrate the ability to 
decode arbitrary temporal patterns of transcriptional activity reaching up to 12 hours prior to cell 
lysis. Finally, by coupling the tickertape to immediate early genes in neurons, we achieve the first 
sequencing-based readout of neural activity, which may ultimately enable the study of deep and 
otherwise inaccessible populations of neurons in the brain. RNA tickertapes thus open up 
possibilities for the high-throughput, multiplexed interrogation of the temporal dimension of 
cellular behavior. 

Introduction 

 The introduction of green fluorescent protein to the biological toolkit was transformative 
for many areas of biology. In particular, the application of fluorescent proteins as reporter genes 
has allowed longitudinal temporal dynamics in individual cells to be inferred by imaging, with 
applications ranging from neural activity to gene expression (254, 255). Today, several new 
sequencing technologies have attempted to add a temporal dimension to RNA-seq, for example by 
metabolically labeling newly synthesized RNAs (256–258), or by inferring the instantaneous 
change in cell state from the abundance of unspliced transcripts (259). However, all existing tools 
for inferring temporal information from RNA sequencing only provide an instantaneous snapshot 
of the temporal activity of a cell: metabolic labeling only identifies RNA made within one specific 
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window, while splicing-based techniques only identify the instantaneous derivative of the cell 

 

Figure 6-1: Encoding of temporal information through RNA edits. (A)  Schematic of the RNA 
tickertape concept. The temporal history of promoter activity is determined by examination of the 
distribution of the number of A to I edits per RNA. Prior to promoter activity, the distribution is at 
steady state (left). A burst of promoter activity generates a population of new, unedited RNAs 
(distribution of edits per RNA shifts to lower values (center)). These RNAs are then gradually edited 
(distribution of edits per RNA shifts to higher values over time (right)). (B) Reporter RNAs (repRNAs) 
consist of editing arrays of adenosines (blue dots) and several MS2 step loops in the 3’ UTR of an 
mRNA. In the presence of an MCP-ADAR fusion (MCP, blue ellipses, ADAR, yellow hexagon), 
repRNAs are edited over time by catalytic conversion of adenosine to inosine (red dots). (C) The 
structure of a portion of one repRNA, showing MS2 stem loops and the repetitive, double-stranded RNA 
motif that serves as the editing substrate. (D) Schematic representation of the Tet-responsive tickertape 
system and experimental timeline. (E) Transcription by the TRE promoter was induced by doxycycline, 
and was stopped by actinomycin D one hour later and sequenced as in the schematic of (D). 
Doxycycline induction shifts the editing distribution towards lower values as new RNAs are generated. 
After promoter activity ceases, the repRNAs accumulate edits and the distribution moves to higher 
values. All histograms are normalized so the sum of all values is 1. (F) Mean edits per transcript for 
TRE induction as a function of time for the TRE tickertape system. Error bars show standard deviation 
(s.d), N=3 biological replicates. 
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state. We asked whether it would be possible to design a reporter gene that would report the 
longitudinal temporal dynamics of gene expression in an RNA sequencing assay. 

The ability to record temporal information about cell state into the sequence of nucleic 
acids would enable the interrogation of gene expression and cellular activity in cell populations or 
over timescales that do not lend themselves to imaging. For example, it has previously been 
proposed that a nucleic acid reporter for neural activity would allow for the interrogation of deep 
and otherwise-inaccessible populations of neurons, which would be transformation for neuroscience 
(231). In pursuit of similar goals, several labs have recently demonstrated the ability to record 
temporal information about cell state into the sequence of DNA (232, 234–243). However, DNA is 
intrinsically a low-temporal-resolution recording device: DNA repair processes operate on 
timescales comparable to the generation time of the organism, whereas transcriptional programs 
are much faster, typically operating over timescales of hours in mammalian cells. Unlike DNA, 
RNA is regularly used by cells to store dynamic information about cell state with high temporal 
resolution over relatively short times, for example during progression through the cell cycle, or in 
the circadian rhythm (260, 261). However, there is currently no known mechanism by which 
temporal information can be directly encoded, without a DNA intermediate, into the sequence of 
RNA. We here demonstrate, using RNA editing enzymes, the ability to encode temporal 
information about cell state into the sequence of RNA for subsequent inference via RNA 
sequencing. 

Our goal was to design a system capable of estimating the magnitude of gene expression in 
one hour intervals stretching back for at least 12 hours. To build an RNA recorder, we reasoned 
that the history of the activity of a given promoter could be inferred from the distribution of ages 
of the RNAs generated by that promoter (Figure 6-1A). Conceptually, if reporters accumulate 1 
edit per hour, then a population of 50 RNAs with 10 edits each corresponds to an event 10 hours 
ago, and a population of 10 RNAs with 5 edits each corresponds to an event 5 hours ago, with one 
fifth the magnitude. We designed reporter RNAs (repRNAs) that are capable of reporting their 
age via the gradual accumulation of A to I edits caused by an engineered version of the human 
Adenosine Deaminase Acting on RNA 2 catalytic domain (ADAR2cd, Figure 6-1B). The repRNAs 
consist of adenosine-rich editing arrays, in the 3’ UTR of a mRNA encoding a fluorescent 
protein(262), that are designed to be favored substrates of the ADAR enzyme(263–265) (Figure 
6-1C). Edits in this region can subsequently be identified as A to G mutations in high throughput 
sequencing of the repRNAs. ADAR2cd is specifically targeted to MS2 binding sites in the editing 
region of the repRNA through a fusion with the MS2 Capsid Protein (MCP)(266). We screened 
multiple repRNA and ADAR variants, and settled on a pair for which the editing in HEK239T 
cells occurs over hours, a timescale relevant for most endogenous transcriptional activity (Figure 
12-1). We confirmed that the majority of edits observed is due to the MCP-ADAR fusion, rather 
than endogenous ADAR (Figure 12-2A). Furthermore, repRNAs do not degrade over the 12 hour 
observation time (Figure 12-2B), so information encoded into the repRNAs is not lost due to 
RNA degradation. We refer to the combination of a repRNA with the MCP-ADAR E488QT490A 
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protein, a variant 
with catalytic 
activity comparable 
to wild type ADAR 
but with reduced 
adenosine base-
flipping activity 
(264), as the RNA 
tickertape system. 

Results: 
RNA Tickertape 
Infers the Timing 
of Isolated 
Transcriptional 
Events with High 
Resolution 

To test the 
response of the RNA 
tickertape to a pulse 
of transcription, we 
incubated HEK293T 
cells expressing the 
RNA tickertape 
system under the 
control of the 
tetracycline response 
element (TRE) in 
medium containing 
doxycycline for one 
hour. We 
subsequently added 
actinomycin D, 
which inhibits RNA 
transcription(267), 
and then lysed the 
cells after a variable 

amount of time for repRNA sequencing (Figure 12-1D). As anticipated, we observed that a 
population of unedited RNAs was generated following doxycycline induction, and that these RNAs 
became gradually more edited over time (Figure 12-1E,F). The low variance (std=12 min +/- 8.25 

 

Figure 6-2: Inference of the timing of promoter activity using RNA 
tickertape. All editing histograms are normalized to sum to 1. (A) The fraction 
of A>I edits as a function of time is shown for three different bases on the 
repRNA, data from one replicate of 1E. Best exponential fits are shown. The 
black dotted line indicates the addition of actinomycin D. (B) For the same 
replicate as in (A), the R2 value of the exponential fit is shown for each base on 
the transcript. The black dotted line indicates the R2 > 0.9 cutoff used for the 
exponential model. (C) The masked editing histograms for four timepoints from 
the same replicate are shown (only the bases with R2 > 0.9 are included). In 
green, the Poisson binomial distribution for each timepoint including all the 
bases with R2 > 0.9 (see Methods). (D) In orange, the masked (R2 > 0.9 in all 
3 replicates from 1E, see Methods) editing histogram for a single 2.5 hour 
replicate along with Poisson binomial distribution for 2.5 hours (red line), and 
the Poisson binomial distribution with least KL divergence from the empirical 
distribution (blue line). The time estimate is mean ± s.d. (N=3 technical 
replicates). (E) As in (D), but for the 4.5 hour timepoint. (F) The mean 
absolute error is shown for the (D) and (E). Error bars show standard 
deviation. 
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min, N=15 timepoints) observed in the mean of the editing distribution between biological 
replicates suggested that the tickertape could be used for temporal inference. 

In order to determine whether the system is in principle capable of inferring the timing of 
transcriptional events, we designed a statistical model to predict the RNA age distribution 
associated with a single transcriptional pulse as a function of time since doxycycline induction. If 
the adenosines on the repRNA template are edited independently and uniformly in time, then for 
each adenosine on the repRNA, the fraction of RNAs with adenosines at that site should decrease 
exponentially with the time since transcription, with a site-specific rate constant that depends on 
the local sequence context. For each adenosine on the repRNA, we fitted an exponential 
cumulative distribution function (CDF) to the editing fraction over time at that base (Figure 
6-2A). We found 24 bases which fit well to the model (i.e., for which the value of R2 was greater 
than 0.9 across all replicates) (Figure 6-2B). Analyzing only those bases, the distribution of edits 
per RNAs was well-approximated by a Poisson binomial distribution with a single parameter, t, 
which represents time since doxycycline was added to the medium (see Methods, Chapter 12), 
with the weights in the Poisson binomial distribution given by the exponential CDFs (Figure 
6-2C). We used this Poisson binomial distribution to infer the times of cells induced at 2.5 and 4.5 
hours prior to lysis, timepoints that had not been included in the dataset used to fit the 
exponential CDFs (Figure 6-2D,E). By minimizing the Kullback-Leibler divergence (which is 
equivalent to maximizing the likelihood) between the test distributions and the Poisson binomial 
distribution over t, we inferred that timing of those events to be 2.35hr ± 0.09hr and 4.45hr ± 
0.03hr (mean ± s.d., N=3 technical replicates), respectively, implying that tickertape can localize 
individual transcriptional events with resolution less than 1 hour, as required. 

The Poisson binomial approach is the preferred approach for estimation because it 
accounts for the exponential nonlinearity inherent in Poisson processes. However, we also found 
that a simple linear interpolation of the mean yields accurate estimations in many cases. In the 
case of the TRE tickertape, the mean interpolation estimated the 2.5hr and 4.5hr timepoints as 
2.53hr ± 0.08hr and 4.38hr ± 0.02hr (mean ± s.d., N=3 replicates), with errors of 5min ± 0.3min 
and 7.5min ± 1.1min (mean ± s.d., N=3 replicates), respectively. To confirm that this accuracy is 
not limited to the TRE tickertape or to HEK cells, we performed similar experiments in 3T3 cells 
using repRNAs expressed under a light-inducible Vivid promoter, induced with blue light for one 
hour (268, 269). We estimated the timing of light induction by interpolation of the mean number 
of edits per RNA, and yielded a temporal resolution of 17.7 ± 7.5 minutes (Figure 12-3, mean ± 
s.d., N=9 samples total across three timepoints). The fact that tickertape works with multiple 
promoters raises the possibility of recording the activity of multiple promoters simultaneously in a 
single cell population, and we validated that this is possible using barcoded repRNAs responsive to 
the Tet and Vivid promoters (Figure 12-4). 
RNA Tickertape Infers the Timing and Magnitude of Complex Transcriptional Programs 

Although the Poisson-Binomial model above achieves high accuracy for isolated 
transcriptional pulses, it is not applicable to more complicated transcriptional programs. In 
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principle, however, the tickertape should be able to encode the timing and magnitudes of multiple 

 

Figure 6-3: Tickertape is capable of decoding complex transcriptional programs. All editing 
histograms are normalized to sum to 1. (A) Arbitrary temporal patterns of transcriptional activity (top 
left) can be recorded into histograms of the number of edits per repRNA (bottom left). Arbitrary 
histograms can be modeled as convex sums of the one-hour distributions observed in the TRE tickertape 
experiments (middle). An approximation of the true history of transcriptional activity is recovered using 
gradient descent (top right) to minimize the difference between the observed editing distribution and 
the convex sum (bottom right). Caption continues on next page. 
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transcriptional events in the distribution of the number of edits per reporter RNA in the cell. In 
order to recover the timecourse of activity from the distribution, we built a general purpose 
decoder that estimates the transcriptional activity as a function of time in one-hour intervals 
stretching 12 hours into the past. Because the RNAs are edited independently, we reasoned that 
arbitrary transcriptional programs could be represented as convex weighted sums of the single-
hour editing distributions (i.e., our one-hour “basis distributions”) as measured with the TRE 
tickertape. Thus, for example, the editing distribution associated with two single-hour pulses could 
be represented as a weighted sum of the editing distributions for each of the single-induction 
pulses individually. We built a gradient descent algorithm to minimize the L2 norm between 
observed editing distributions and convex sums of these basis distribution (Figure 6-3A). As a first 
test, we applied the algorithm to the single-induction editing distributions themselves (Figure 
6-3B, left). In all cases, to avoid overfitting, we averaged the editing distributions from two of the 
biological replicates in Figure 6-1E, and used the resulting averages as the basis functions for 
decoding the third replicate. The resulting estimates closely matched the expected single-hour 
profiles, and corresponded to a temporal resolution of 1.27h +/- 0.33h (mean +/- s.d. over all 
replicates and timepoints, N=36, see Methods, Chapter 12. Note that a temporal resolution of 1h 
would correspond to perfect estimation). Remarkably, the temporal resolution did not appear to 
depend on the length of time elapsed between induction and lysis (Figure 6-3C). 

We next asked whether the tickertape is capable of identifying the presence of multiple 
transcriptional pulses. Since most complex transcriptional programs cannot easily be generated in 
cells, we generated simulated editing distributions as convex weighted sums of the single-induction 
editing distributions measured in our TRE experiments, and compared the weights obtained using 
the decoder to the ground truth weights used to simulate the data. To avoid overfitting, the data 
used as ‘basis’ functions in the decoder were distinct biological replicates from the data used to 
generate the simulated distributions. We simulated distributions consisting of a pulse at 2 hours 
and a second pulse of equal magnitude at subsequent times, which we refer to as a double 
induction condition (Figure 6-3B, center left).  The decoder successfully identified the presence of 
two transcriptional pulses in every case, and estimated the timing of the second pulse with 1.5h 

(B) Various transcriptional programs can be decoded using a general purpose tickertape decoder. Each 
panel shows the ground truth transcriptional program (top); the inferred programs (middle, predictions 
of 3 biological replicates), and the editing histogram and inferred weights for a randomly chosen 
example (bottom). From left: single-induction conditions; double-induction conditions, with two 1 hr 
pulses separated by a gap in time; double induction conditions with unequal amplitudes on each 
induction; three-hour continuous inductions; six-hour continuous inductions. (C) The temporal 
resolution of the predictions on the single-induction conditions as a function of time since induction. (D) 
The temporal resolution of predictions on the second induction in a double-induction condition as a 
function of time since induction. (E) The amplitude assigned by the decoder to timepoints ≥8 hours 
(orange) or ≤3 hours (blue) for each condition in the variable amplitude double induction tests. (F) The 
decoder applied to experimental three-hour induction conditions, with empirical editing histogram (top), 
putative ground-truth weight distribution (bottom left), and inferred weight distribution (bottom right) 
shown. (G) Same as F, for experimental six-hour inductions. 
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+/- 0.32h time resolution (N=27 timepoints), again independent of the delay between the lysis 
and the first pulse (Figure 6-3D). To determine whether the decoder is sensitive to the relative 
magnitudes of different transcriptional events, we mixed the 2 hour timepoint with the 9 hour 
timepoint with various coefficients of mixing (Figure 6-3B, center). We then calculated the total 
weight assigned to timepoints above 8 hours or below 3 hours (inclusive), respectively, and found 
that the decoder is sensitive to the amplitude of transcriptional events (Figure 6-3E). The decoder 
estimated the amplitude above 8 hours to within 5.3% +/- 3.8% of the true value; and estimated 
the weight below 3 hours to within 2% ± 2.5% of the true value. Thus, we conclude that the 
decoder is sensitive to both the relative timing and relative magnitudes of transcriptional pulses. 

To determine whether this sensitivity extends to more complex transcriptional programs, 
we first applied the decoder to extended temporal square waves (i.e. pulses longer than 1 hour). 
For this case, the temporal resolution of the decoder is not well-defined, so we instead measure the 
percentage of the weight assigned by the decoder to the correct timepoints (see Chapter 12). For 
comparison, we note that the decoder correctly assigned 77.9% +/- 25.2% of the weight in the 
case of the single-induction estimates, corresponding to a time resolution of 1.27h. Applying the 
decoder to simulated pulses of 3 hours (Figure 6-3B, center right), the decoder correctly assigned 
77.7% ± 12.2% of weight (mean ± s.d., N=3 replicates for each of 10 conditions, see Chapter 12). 
Applied to simulated pulses of 6 hours (Figure 6-3B, right), the decoder correctly assigned 83.3% 
± 5.7% of the weight (N=3 replicates for each of 7 conditions). Thus, the accuracy of the decoder 
as applied to extended transcriptional programs is similar to the accuracy obtained for the single-
induction timepoints. In order to evaluate the decoder on the most challenging case, in which the 
transcription rate may increase or decrease rapidly, we simulated random transcriptional functions 
by sampling the basis function weights from a 12-dimensional Dirichlet distribution. In this case, 
the decoder correctly assigned 71.9% ± 9.2% of the weight (mean+/-std, N=1000) (Figure 12-5). 
Although this represents a reduction in accuracy compared to the single-hour timepoints, it 
implies that the tickertape is still able to estimate arbitrary transcriptional programs with high 
accuracy. To evaluate the reasonableness of this accuracy on experimental data, we generated 3-
hour and 6-hour pulses using the doxycycline-actinomycin setup described above (Figure 6-3F,G). 
In line with the expected accuracies from the simulations, the algorithm successfully assigned 
66.7% of the weight for the 3 hour square wave (N=3 biological replicates. The value was exactly 
66.7% for all three replicates.), or 64% ± 1.6% for the 6 hour square wave (N=3 biological 
replicates). Thus, the accuracy of the tickertape on experimental data is expected to be similar to 
the accuracy obtained on our simulated datasets.  
RNA Tickertape Operates in Single Mammalian Cells 

The accuracy of RNA tickertape depends on observing enough repRNAs that the empirical 
distribution of edits per repRNA accurately approximates the true distribution. One particularly 
interesting application of the RNA tickertape involves determining the relative timing of events in 
a population of single cells. We transfected HEK cells with barcoded TRE tickertapes, induced 
with doxycycline, and then followed one of three protocols: cells in condition 1 were left in 
doxycycline for 3 hours prior to lysis; cells in condition 2 were silenced with actinomycin D after 1 
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hour, and then left for 3 hours, and cells in condition 3 were silenced with actinomycin D after 1 
hour and then left for 7 hours. Individual cells were then sorted into wells of a 96 well plate, and 
we subsequently performed single-cell repRNA sequencing (Figure 6-4A). Applying our decoder to 
the resulting editing histograms yielded faithful estimates of the induction time: the absolute 
deviation between the temporal estimate for the single cells in condition 2 and a bulk of 100,000 
cells in condition 2 was 1.2hr +/- 0.8hr (mean +/- std, N=27), while for condition 3 it was 1.5hr 
+/- 1.0hr (mean +/- std, N=19), which is similar to the temporal resolutions obtained for the 
bulk single-induction conditions above (Figure 6-4B, see Chapter 12). Thus, the tickertape is 
capable of recording the transcriptional activity of single cells.  

The ability to order single cells according to the timing of transcriptional events would 
have great utility for studying the diversity of responses to cellular perturbations (270, 271). To 
that end, we asked whether the tickertape can be used to order the individual cells from our single 
cell experiment, according to when the perturbation arrived. Ordering the cells according to their 
estimated times, we found that there were a total of 5 transpositions (i.e., 10 cells out of order) 

 

Figure 6-4: Tickertape can decode transcriptional programs in single cells. All editing histograms 
are normalized to sum to 1. (A) Editing histograms for bulk conditions 1 through 3 (top) and 
randomly chosen single cells (bottom). (B) Predicted induction times for all single cells in the 
experiment, calculated as the center of mass of the inferred weight distributions (N=24 for condition 1, 
N=27 for condition 2, N=19 for condition 3). (C) The predicted induction time for each single cell, 
ranked from least to greatest. Green dots correspond to condition 1; red dots correspond to condition 2; 
blue dots correspond to condition 3. (D) Predictions performed on double-induction editing distributions 
after subsampling to 300 reads. Top: ground truth transcriptional programs. Middle: mean prediction 
over 100 such samples. Bottom: One randomly chosen sample from the indicated condition, and its 
inferred editing distribution. (E) The resolution with which the second timepoint in the double-
induction conditions can be inferred is shown as a function of time. All error bars show s.d., N=3 
biological replicates at each of 10 timepoints. 
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out of 72 cells, an accuracy rate of 
86% (Figure 6-4C). Finally, in 
order to determine whether the 
tickertape can encode the presence 
of multiple transcriptional pulses 
in single cells, we simulated 
distributions consisting of only 100 
RNAs drawn at random from the 
double-induction distributions 
(Figure 6-4D). As in the case of 
the bulk double-induction, the 
decoder found two transcriptional 
pulses, and estimated the timing of 
the first pulse with an accuracy of 
1.92h ± 0.35hr resolution (Figure 
6-4E), thus demonstrating that the 
tickertape is capable of detecting 
multiple transcriptional events 
even with an extremely limited 
number of RNAs. 
RNA Tickertape can be used to 
infer the timing of neural 
activity 

All systems for temporally 
resolved detection of neural 
activity in single cells today rely 
on optical detection, or on the 
detection of electric or magnetic 
fields, and, as such, it is 
challenging to record from many 
neurons simultaneously, or from 
deep neural populations. We 
hypothesized that tickertape could 
be used to perform a sequencing-
based readout of the 
transcriptional history of 
immediate early genes, which are 
often used for detection of neurons 

recently active in a neural network, but are mostly used to perform such measurements at single 
time points(272). We placed the repRNA expression under the control of a c-fos promoter, and 

 

Figure 6-5: Sequencing-Based Activity Measurement in 
Neurons using c-Fos Tickertape. (A) Schematic of tickertape 
constructs and experimental timeline for neuronal recording. 
(B) Editing histograms are shown for neurons prior (blue) and 
one hour following (orange) KCl induction. The lower overall 
editing rate for the +KCl case indicates the generation of new 
repRNAs by the c-fos promoter. Editing histograms are 
normalized so the sum of all values is 1. (C) The mean editing 
rate is shown as a function of time following KCl induction. (D) 
The predicted and actual time estimates are shown for all 
timepoints. Dotted line is a guide for Y=X. There are no 
estimates for the 1 hour and 7 hour timepoints due to mean 
interpolation (see Supp. Fig. 3). (E) The mean absolute error in 
the predictions from (C) is shown as a function of time since 
induction. All error bars show s.d. (N varies, see Chapter 12). 
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transfected the tickertape system into primary mouse hippocampal neuron culture at 6 days in 
vitro (DIV), which is used as a model for the study of coupling between excitation and 
transcription in neurons (273, 274). At 14-15 DIV, we subsequently induced neural activity by 
adding a potassium-based depolarization medium to the culture (see Chapter 12) (Figure 6-5A). 
There was a clear shift in the repRNA editing histogram towards lower values following one hour 
of induction (Figure 6-5B), indicating that new repRNAs were being produced in a depolarization-
dependent manner. 

In order to estimate the temporal history of neural activity, we generated standards by 
inducing neurons for one hour with the depolarization medium, washing them back into normal 
(non-depolarizating) medium, and then lysing them at one hour intervals. For up to 7 hours after 
induction, a population of new repRNAs could be seen to gradually accumulate edits. Even in the 
presence of a large population of background repRNAs generated by constitutively fos+ neurons, 
the mean number of edits per RNA increased linearly over time (Figure 6-5C), at a rate of 
approximately 0.5 edits per hour. The linearity of the editing mean suggests that the editing mean 
should be a good predictor of the time since depolarization. We estimated the times of each 
replicate for the 2hr, 3hr, 4hr, 5hr, and 6hr timepoints by linear interpolation (see Chapter 12). 
We found that these replicates could be predicted from the standards with an average accuracy of 
37 ± 23 minutes (Figure 6-5D,E, mean ± s.d.), which is comparable to the ~1hr temporal 
resolution intrinsic to immediate early gene transcription. Then, in addition, we stimulated 
neurons at 3.5 and 5.5 hour timepoints, and found that these could be predicted with an average 
accuracy of 72 ± 55 and 35 ± 22 minutes, respectively. Thus, RNA tickertape accurately reports 
the timing of immediate early gene transcription in neurons. 

Discussion: 

RNA tickertape is a novel molecular recording device that enables the recording of the 
temporal history of transcription into the sequence of RNA. It is likely that, using the same 
concept, alternative systems could be designed that record other kinds of signals, besides 
transcription. For example, by using alternative dimerization systems (275, 276) to link ADAR to 
constitutively expressed repRNAs in a stimulus-specific manner, it may be possible to construct 
tickertapes that report on the timing of other kinds of cellular events, such as calcium or other 
signaling molecules. Together, these observations suggest that RNA tickertape is a scalable and 
extensible approach for recording the temporal activity of cells. 
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Chapter 7   
Molecular Barcoding for Connectomics 

 

hroughout my graduate school career, I thought extensively about strategies for 
molecular barcoding of neurons, with an eye towards connectomics. Fundamentally, 
optical barcoding approaches involve labeling neurons in some way that allows for the 

identity of the neuron to be inferred by imaging them in some number of color channels with an 
optical microscope. In the simplest approach, each channel is either present or absent in a cell, 
providing 2  combinations, where 𝑁 is the number of channels. As discussed below, if it is 
possible to label individual molecules with multiple channels, and if it is possible to distinguish 
those molecules optically, so that each cell can contain multiple combinations of channels, the 
combinatorial diversity could be much higher. This is the case for RNA barcoding approaches, in 
which the RNAs are typically relatively sparse in the cell, or for protein-based approaches with 
sufficiently strong superresolution microscopy to enable single-molecule imaging. 

From February to October 2015, I worked with Noah Jakimo on a strategy called 
Brainbar, inspired by a strategy conceived by Adam Marblestone (277), for delivering barcoded 
RNAs to the processes of neurons. These barcodes were designed to be read out using multiplexed 
FISH techniques, rather than direct in-situ sequencing techniques as originally proposed, because I 
was convinced that in-situ sequencing protocols were too challenging and took too long to achieve 
widespread adoption. Leveraging the ability to image RNAs at the single molecule level, the 
Brainbar barcodes were designed in a way so that sufficiently high combinatorial diversity could 
be obtained in a single round of imaging, rather than in many successive rounds of imaging as is 
necessary for in-situ sequencing. However, the method failed at the first hurdle: Noah and I found 
that RNA barcodes expressed off of the U6 Pol III promoter never left the nucleus in neurons, and 
RNAs expressed off of a Pol II promoter (such as CAG) are not produced at high enough 
concentrations, and do not traffic in the processes, despite our best efforts to improve the 
trafficking, for example using RNA degradation resistance elements (278, 279). In October 2015, I 
became convinced that protein-based barcodes, rather than RNA barcodes, were the correct path 
forward, because they avoided the RNA trafficking, stability, and expression issues. (GFP 
expressed in a neuron will fill the cell without any engineering.) The remainder of this chapter 
proposes a similar barcoding approach, in which proteins would be labeled with many different 
epitopes. The proteins would be imaged at the single molecule level, allowing each protein to be 
imaged in multiple optical channels, thus constructing the barcode. 

Nonetheless, I became discouraged by the difficulty of the 20x expansion protocols that would be 
necessary to resolve individual protein molecules, and did not begin working on these ideas 
experimentally until April 2017. At that point, I realized in a conversation with Nick Barry that 

T 
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the simple 2  scaling obtainable with non-single-molecule protein barcoding would be sufficient 
for connectomics if we could image in ~20 to 30 channels. However, imaging a cell in 20 to 30 
channels would require a system for multiplexed imaging, since one can typically only image 4-5 
channels at a single time in a standard optical microscope. Nick proposed that we could use MIBI 
to read out a many-color Brainbow, but MIBI and related hyperspectral systems are generally 
point-scanning systems, and are thus too slow for most applications (42, 280). At the time, high-
quality protocols for multiplexed antibody staining in expansion microscopy (which we assumed 
would be essential to achieve high enough resolution to visualize spines) did not exist. We 
considered antibody-oligo conjugates as a way to attach oligonucleotides to the barcode proteins, 
but good antibody-oligo conjugate protocols also did not exist. 

We also considered whether we could conjugate antibodies to DNA binding proteins, like TAL 
effectors, as a way to attach oligonucleotides to the antibodies after staining. In May 2017, I 
wondered in a conversation with Adam Marblestone whether we might be able to simply to 
express the TAL effectors in the cells as a way of generating barcode proteins that could be 
stained with oligonucleotides. The key question was whether the TALEs would retain their ability 
to bind DNA after fixation. In a one-day experiment, I expressed two TALEs in HEK cells, and 
showed that they retained their binding activity and specificity when the cells were fixed in 
methanol, but not PFA. Nick and I then performed a number of experiments over the following 
year. Remarkably, both TALEs and zinc fingers have this property, and zinc fingers are even 
somewhat robust to formaldehyde fixation. The method worked extremely well in culture, but 
staining in vivo was weak. 

However, the landscape has changed dramatically since we first began this project, and we 
reevaluated the landscape in late 2018 and determined that the time was ripe for direct barcoding 
via direct antibody staining. Several factors informed this decision: firstly the publication of 
spaghetti-monster fluorescent proteins provided us with a method for delivering epitopes on a 
fluorescent protein scaffold (281); recombinases had been shown to be ineffective for the 
application described in this chapter (282), but a new family of blood-brain-barrier-crossing 
viruses provided an alternative way to generate combinatorial diversity (283–285). The MARC1 
mouse demonstrated that it is in principle possible to generate a mouse line with 30 or more 
transgenes, so a 30-color protein barcode would be compatible with a transgenic ultimately (286). 
Finally, a number of new ExM-compatible antibody-multiplexing approaches had been published 
(14, 15), as well as new oligo-conjugated antibody methods (287). Bobae An joined our team at 
that time, and has been instrumental in spearheading the new protein barcoding method. As of 
the publication of this dissertation, the work is still ongoing. 
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Summary: 
We suggest a simple protein-based multicolor optical strategy for uniquely barcoding large 
numbers of neurons, based on tractable genetic methods and enabled by Expansion Microscopy 
(ExM) (37). The diversity generated scales super-exponentially with the number of available 
colors. We discuss the application of this strategy to barcoding entire Drosophila or larval 
Zebrafish brains using only off-the-shelf recombinase-based cassettes and 6-color microscopes, as 
well as its extension to mammals. 

Introduction 
Scalable arbitrary-color optical super-resolution 

We recently developed Expansion Microscopy (ExM) (37): rather than using lenses to create 
optical magnification in a microscope, we recently found that physical magnification of the 
specimen itself is possible. Polymerizing electrolyte monomers directly within a sample to form an 
electrically charged polymer network, followed by solvent exchange, results in specimen expansion. 
By covalently anchoring specific molecules within the specimen to this polymer network and 
proteolytically digesting away unwanted endogenous biological structure, we found that samples 
could be expanded isotropically 4.5-fold in linear dimension. We discovered that this isotropic 
expansion applies to nanoscale structures, and thus this method can effectively separate molecules 
located within a diffraction limited volume, to distances great enough to be resolved with 
conventional microscopes. As a side effect, this process renders the sample transparent. 

In the first paper [2], we expanded tissue by 4:5linearly (> 100volumetrically). Crucially, in recent 
work using novel expansion polymer strategies (288), we can expand tissue by up to roughly 20 
linearly, implying that a diffraction-limited microscope with 300 nm optical resolution can achieve 
an effective resolution post-expansion of 15 nm. This works with an arbitrary color-palette of 
fluorescent dyes. 

The power of multiple colors: 
Our main question here is: given this new capability in scalable, fast, multicolor, fully 3D, super-
resolution optical imaging, can we devise a multicolor optical labeling strategy which would 
robustly enable connectome extraction? Ideally, the use of multiple colors would allow us to 
extract connectomes from optical imaging data without the need for complex machine learning or 
human annotation. Specifically, the use of multiple colors could serve to disambiguate neuronal 
identities in cases where the pure membrane geometry appears ambiguous. Furthermore, multiple 
colors could be used to error-correct one another: where one color or label fails or exhibits an 
ambiguity at a given position in the neural geometry, another color could potentially “fill in the 
gap.” Here we propose to take this approach to the extreme, endowing each neuron in a brain 
with a unique “color code” that identifies it on the basis of its color contents, over and above the 
information that can be gleaned by tracing its morphology. 
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We will show that multicolor labeling could enable unique neuronal barcoding with only moderate 
requirements on fluorophores, epitopes, recombination sites, and other biotechnological primitives. 
Moreover, we explain how the available barcode diversity can be made to scale super-
exponentially with the number of available colors. In what follows, we first remind the reader of 
prior approaches for unique cell barcoding, then describe schemes for increasing the label diversity 
super-exponentially, and then illustrate examples for labeling animal brains of various sizes. 

Prior approaches for optically barcoding neurons 
Nucleic acid-based barcoding 
Recently, researchers have proposed to endow neurons with unique genetically-encoded molecular 
barcodes in the form of RNA strings, which can be read out through bulk sequencing (289), or 
through in-situ RNA sequencing in an optical microscope (277, 290), or through multiplexed in-
situ hybridization (9, 10). Such unique RNA labels can be read out from any point in a cell, 
regardless of distance from the parent soma, removing the need for complete image-based 
morphological tracing of the cell's geometry. These methods, however, as currently conceived, 
require a large amount of sequence diversity to be encoded into a single RNA strand and then to 
be read out over multiple cycles of chemical interrogation of the RNA. Thus, an in-situ barcoding 
technique that achieves high label diversity with more facile genetic and readout techniques would 
be desirable. We will show below that this can be achieved by splitting the barcode information 
over multiple molecules. 

Brainbow Barcoding 
Researchers have endowed neurons with random cell-specific combinations of fluorescent protein 
expression levels, giving neurons distinct fluorescent colors under the confocal microscope, a so-
called “Brainbow” method (291, 292). The cell can manufacture enough of the Brainbow label 
proteins to enable almost complete coverage of the cell membrane. It is anticipated that such 
protein-based labeling will have an advantage over RNA-based barcoding methods which, due to 
the sparser number of RNAs per cell, may not be able to completely tile a neuron with cell-
identifying barcodes. Unfortunately, the number of distinguishable colors generated by Brainbow 
has been limited to a few hundred, which is not sufficient to disambiguate densely-labeled neural 
circuitry over long distances. Thus, a protein-based optical barcoding technique which achieves 
greater effective color diversity would be desirable. We will show that this can be achieved by 
splitting the barcode information over multiple proteins or subcellular structures each of which 
can be interrogated individually rather than as mixtures. 

Concepts: 
Criteria for an optimal barcoding strategy 
With the emergence of scalable, arbitrary-color super-resolution optical microscopies comes an 
opportunity to invent new labeling strategies. We will rely on a generalized Brainbow-type 
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approach, in which recombinases stochastically diversify genomic cassettes, leading to a 
stochastically chosen set of proteins that serves as a unique barcode for a given neuron. These 
proteins will then be imaged via ExM using antibodies conjugated to fluorescent dyes. Our 
strategy aims to combine several attributes: 

1) Combinatorial genetic diversity:  labels sufficient to uniquely label every cell in a brain 
must be encoded into the genome. The diversity of labels that can be generated is limited 
at the genotypic level by the number of orthogonal recombinase sites that can be used 
simultaneously in a single organism: 10 in current practice. For example, in Drosophila we 
are aware of 4 orthogonal recombinases (293), one of which (Flp) is already known to 
possess 3 orthogonal sites (292), for a total of a least 6 orthogonal sites. If we add three 
known orthogonal Cre sites and a ϕC31 site (although ϕC31 is irreversible, restricting the 
number of values that a single cassette can generate), we expect to be able achieve at least 
10 sites in Drosophila. It may be possible to increase this number further, e.g., via 
generating additional orthogonal LoxP sites for Cre. In addition, up to 7 putatively 
orthogonal sites have been reported elsewhere for Flp (294), and up to 6 orthogonal pairs 
of attP/attB sites have been reported for ϕC31 (295). More speculatively, Appendix 2 
(Chapter 13) discusses potential means to engineer greater genotypic diversity including 
temporal multiplexing of recombination sites by using inactivated Cas9 to block specific 
sites at specific times. The maximum genetic diversity is also limited by the number of 
possible values that can be generated by each cassette, which has been limited to 4 in prior 
BrainBow systems, although below we will discuss extensions to > 7 values per cassette. 

2) Protein-based barcodes:  to enable high copy-numbers of labels and hence complete filling 
of the cell. Our proposed readout scheme is based on antibody staining of epitopes 
attached to scaffolding proteins (281). The primary limitation here is the number of 
epitopes/antibodies that can be probed simultaneously via immuno-histochemistry1: the 
number of primary and secondary antibodies that must be used simultaneously will be 
assumed ≤ 10 initially, with the possibility of adding a few more via additional efforts in 
some cases. 

3) Spatial resolution:  we will assume next-generation 20x ExM enabling roughly 
15 nm spatial resolution, i.e., that we can resolve multiple discrete molecules or distinct 

                                         
1 When a large number of orthogonal epitopes are required to be labeled in a single wash, and secondary 
antibodies are to be used (rather than just labeled primaries), we will need a sufficiently large set of 
orthogonal secondary antibodies, e.g., to achieve a set of size 12 we may need to target distinct primary 
antibody isotypes in addition to the host species of the primary antibody. It may also be possible to use pre-
adsorbed secondaries. Spectral multiplexing of up to 10 simultaneously applied fluorescent antibodies has 
been demonstrated, and more for mass-spec-based readout of primary antibody identity (350). 
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sub-cellular structures (actin filaments, microtubules, membrane, mitochondria) even 
inside a single thin axon. 

4) Protein expression level:  supposing that we can generate at most 10  genetically encoded 
label protein molecules per cell, then a 1 mm long axon of 300 nm diameter would exhibit 
an expressed protein density of at most 1 protein per 20 nm cube if proteins were 
randomly distributed in 3D the cytosol, or 1 protein per 10 nm square if proteins were 
randomly distributed in 2D on the membrane. In other words, operating at 15 nm 
resolution voxel size, we have roughly one protein per resolution voxel. Thus, imaging 
expressed proteins at this level becomes a single-molecule problem. 

5) Digital rather than analog encoding:  for noise-robustness with respect to color 
intensities. Specifically, we prefer encoding of information in the discrete subunit 
composition of individual molecules, rather than in molecular densities, for robustness to 
expression-level noise, although we will also consider digital control of protein expression 
level as a useful primitive in certain cases. With digital encoding, the primary limitation is 
the number of orthogonal fluorescent channels available, ≤ 10in standard practice, 
although it should be possible to extend beyond 10 channels with additional efforts. 

6) Ability to read out the labels in a single cycle of imaging , without the need for many 
successive fluidic wash steps as in FISSEQ-BOINC (277). We will assume that only one 
round of imaging and labeling is possible, although multi-wash labeling and imaging has 
been demonstrated in array tomography (296), serial FISH (297), FISSEQ (290) and 
similar methods. 

7) No need for novel genetic diversification methods: adaptations on existing 
recombination-based methods should suffice. 

Genotype/Phenotype Diversification 
Consider a system using 𝐶 orthogonal recombinase sites, generating 𝑣 possible stochastic values 
per cassette. 𝐶 genome-integrated cassettes are distinguished by their use of orthogonal 
recombination sites, which prevents inter-cassette recombination. For example, in a system using 3 
orthogonal Cre/Lox sites and 3 orthogonal Flp/Frt sites we would have 𝐶 =  6. Cre recombinase 
is capable both of excising the region between similarly-oriented LoxP sites, and of reversing the 
region between oppositely-oriented (inverted) LoxP sites. Between every pair of inverted LoxP 
sites, a region can be inserted which codes either for a transcript A in the forward state, or a 
different transcript B in the reverse state. We will call such a region an “inversion unit.” With 
two such inversion units in tandem, it is possible to encode 𝑣 =  4 distinct transcripts onto a 
single cassette, each chosen stochastically upon recombination with roughly ¼ probability, as was 
used in the original BrainBow system (291). 

With more than two inversion units in tandem the distribution over the possible recombination 
states of the cassette may not be uniform (see Appendix 1, Chapter 13), by virtue of the 
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possibility of internal excisions, which bias the system away from the “middle” states. To evaluate 
this possibility, we performed simulations of the recombination process. In simulations of a 4-value 
cassette (i.e., two inversion units in tandem), it was found that all 4 values are achieved with 
equal probability, which is to be expected since there are an equal number of recombination 
pathways to each value. In the simulations of an 8-value cassette (i.e., four inversion units in 
tandem), the Shannon entropy of the resulting distributions over recombination sites was 
approximately 2.9 bits (as compared with log 8  = 3 bits for a perfectly uniform distribution) if 
we allow a sufficient amount of recombination for each cassette to approach equilibrium. This 
corresponds to 2 . = 7.46 effective values per cassette. When only a few recombinations occur per 
cassette, the entropy can drop below 2.8 bits. This behavior is shown in Appendix 1 (Chapter 13). 
The above scheme can generate 𝑣  distinct genotypes. Using cassettes with two inversion units, 
hence 𝑣 = 4, and 9 orthogonal recombinases, hence 𝐶 = 9, we have 𝑣 = (2 ) = 262144, or 18 
bits, sufficient to barcode the Drosophila brain or larval Zebrafish brain. More generally, in order 
to be able to assign a unique genotype to each of 𝑁 neurons, we must have 

 𝑪 𝐥𝐨𝐠𝟐 𝒗 ≫ 𝐥𝐨𝐠𝟐 𝑵   

The term log 𝑁 is the total number of bits needed to assign a unique genomic ID to every neuron 
in the system in question. In Figure 7-1, 
the necessary number of bits needed is 
shown for some model organisms. It is 
then up to the experiment designer to 
design a system in which all of those 
genotypes translate into optically-
distinguishable cellular phenotypes that 
can be read out from small regions of 
interest at arbitrary positions along the 
length of the axon. 

Readout 
Once neurons have been assigned unique 
genotypes, the corresponding phenotype 
must be read out optically. The key 
requirement on the readout strategy is 

that it must have a bit capacity at least as large as the bit capacity of the genotyping method. 

Peptide Epitopes 
Our phenotyping strategy will rely on the expression of peptide epitopes displayed on scaffolding 
proteins (281) (see Appendix 5, Chapter 13, for a discussion of RNA labels). These epitopes can 
then be detected either using fluorescently labeled primary antibodies, or using primary antibodies 

 

Figure 7-1: Number of Bits Needed for Uniquely 
Barcoding Animal Brains.  The number of neurons 
that can be orthogonally labeled by a genotyping 
strategy is shown as a function of the number of bits 
encoded by the genotyping strategy. 
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followed by fluorescently labeled secondary antibodies for signal amplification. In the absence of 
an additional mechanism of multiplexing, a strategy with 𝐸 epitopes can encode only 𝐸 bits, i.e., 
2  possible phenotypic states, where we assume that an epitope is either present or absent but 
that we cannot readily distinguish analog levels of epitope. We seek to design a system that 
requires as few orthogonal epitopes as possible, especially if signal amplification using secondary 
antibodies is required2. 

Number of Colors 
We will denote the number of spectrally orthogonal fluorophores by 𝐹. In preliminary 
experiments, we have been able to perform single-molecule imaging of 6 orthogonal fluorophores 
on a microscope with 4 lasers. Illumination systems are available from Coherent with up to 8 
lasers. Using such a system, we expect that we could easily perform amplified single-molecule or 
bulk imaging of 9 orthogonal fluorophores. In Appendix 3 (Chapter 13), we illustrate a possible 
strategy for achieving up to 12 orthogonal fluorescence channels, without the need for spectral 
demixing. 

Readout Multiplexing 
In general, the genotypes and phenotypes assigned to cells in the barcoding strategies we propose 
will contain more information than 𝐹 ≈ 12 bits of information, i.e., a pure digital Brainbow 
strategy with 2 = 4096 color combinations would have insufficient readout diversity. Even with 
3 distinguishable intensity levels and 12 fluorescence channels, we have only 3 = 531441 
possible readouts which is insufficient for barcoding whole mammal brains. Moreover, we wish to 
use a limited number 𝐸 of epitopes/antibodies. Thus, an additional multiplexing strategy will be 
required to read out the phenotype, beyond just a digital Brainbow approach, i.e., a bulk per-cell 
expression level for each of 𝐹 ≤ 12 fluorophores. There are several options for the mode of 
multiplexing: 

Temporal Multiplexing 
Temporally multiplexed readout strategies can increase the number of bits that can be read out 
per fluorophore. In particular, if one has 𝐹 fluorophores and performs 𝑤 reagent washes, one can 
read out 𝑤𝐹 bits, e.g., for temporal multiplexing via sequential immuno-histochemical wash cycles 
(296), or sequential hybridization (10, 297) to antibody-identifying DNA barcodes. However, 
because it is assumed that the epitopes are distributed throughout the cell prior to imaging, 
temporal multiplexing does not increase the number of bits that can be read out per epitope, and 
is thus only useful given more epitopes 𝐸 than fluorophores 𝐹. In line with the criteria outlined 

                                         
2 Again, up to 10 orthogonal secondary antibodies and fluorescent color channels have been demonstrated in 
immune histochemistry (350), to our knowledge. 
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above, we will limit ourselves to only a single wash, 𝑤 = 1. We will thus assume that we have at 
least as many fluorophores as epitopes. 
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Spatial Multiplexing 

 

Figure 7-2 Address-Value Connectomic Phenotyping Strategy.  Illustration for the case of 4 cassettes, 
each of which encodes 4 possible proteins, for a total of 44 or 256 labels, which can be read out with 5 
epitope-fluorophore pairs (represented here by brown, green, red, blue and purple dots). The initial 
genome-integrated cassettes (top) undergo recombination, producing a randomized genotype within each 
cell. The corresponding phenotype consists of four generalized spaghetti-monster fluorescent proteins 
(smFPs) – designed for efficient immuno-staining – each of which is labeled with a subset of the 5 
available epitopes. Two fluorophores (red and green) indicate which cassette gave rise to the protein 
(the address bits), while two fluorophores (blue and purple) indicate the outcome of recombination (the 
value bits). The fifth fluorophore is always present. The barcode is given by the value bits, ordered 
according to the addresses. Readout is performed by antibody staining against the epitopes. The 
proteins are allowed to remain in the cytosol, and expression must be controlled such that following 
expansion, there is at most one protein per diffraction-limited spot (or more generally per microscope 
resolution voxel). This method achieves higher diversity than the structural labeling method for the 
same number of epitope-fluorophore pairs, because more than 3 fluorophores are used by each cassette. 
While the protein-epitope readout case is emphasized here, RNA FISH-based or FISSEQ-based readout 
of address-value barcodes is also possible. pA denotes a polyadenylation sequence that terminates 
transcription. 
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An alternative approach to multiplexing involves reusing the same set of peptide epitopes on 
multiple different protein labels, and then spatially separating these labels in a way that allows 
them to be distinguished from one another. Then, a labeling scheme with 𝐸 epitopes and 𝑠 
spatially-separated labels could in principle encode 𝑠𝐸 bits of information. Unlike in the case of 
temporal multiplexing, spatial multiplexing strategies increase the amount of information obtained 
per epitope, as well as per fluorophore.  

In an exemplary such scheme, “address-value” multiplexing (Figure 7-2), protein labels generated 
by different cassettes are allowed to diffuse through the cytosol or along the membrane, and are 
imaged at the single-molecule level with physical amplification of signal from each single molecule. 
Spatial multiplexing is achieved by having multiple cytosolic label proteins, each with multiple 
fluorophores, and expressing these proteins at a low enough density that there is at most one 
protein per diffraction-limited spot in the post-expansion sample, yet high enough density that a 
given small region of interest (ROI) contains at least one of each of the multiple distinct labels. 
The combination of fluorophores present or absent on a protein label then indicates both a) which 
cassette the protein came from, and also b) the result of recombination. 

In order to obtain the maximum amount of genetic diversity, the proteins generated by each 
cassette must be distinguishable from each other. In the address-value approach, each cassette 
uses the same epitope/fluorophore pairs to encode the result of recombination, and cassette 
identity is indicated by a separate, dedicated register of “address” epitope/fluorophore pairs, 
which are displayed by the corresponding label protein regardless of the result of recombination. 

Alternative spatial multiplexing methods might rely on targeting label molecules to distinct 
cellular structures (Appendix 6, Chapter 13). 

Expansion microscopy can be used to ensure at most one label protein per diffraction-limited spot. 
For example, using a 10-fold linear expansion factor and expressing labels at a density of one per 
cube of 20 nm20nm on a side in the pre-expansion space, and then imaging with a microscope 

capable of 200 nm 3D resolution, we could fit = 125 label molecules within an (100 nm)  

ROI. This should be more than enough to sample at least one of 10-20 distinct species of label 
molecule. Moreover, after ExM expansion, amplification of label brightness is possible, since each 
label molecule now has on the order of 200nm of physical space around it that can be occupied 
with bulky groups such as primary and secondary antibodies, hybridization probes, quantum dots 
and so forth. For example, with smFP-based antigens (298), since each smFP could carry many 
epitopes, and each primary and/or secondary antibody can carry many fluorophores, one can 
easily imagine upwards of 100  fluorophores being recruited to each molecular label. 

Spatial grouping of label molecules 
One challenge with the optical readout strategy presented here is that it depends on being able to 
find all of the 𝐶 different label molecules in a local region of interest that manifestly corresponds 
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to a single cell, i.e., single contiguous local patch of a single neuron. We have chosen peptide-based 
barcodes because peptides can be expressed to high levels, enabling high densities of label 
molecules. However, we still require a means to determine if a cluster of nearby label molecules 
belong to the same neuron, or are split across two or more neighboring neurons. We anticipate 
that, using high expansion factors to ensure high spatial resolution, and ExM-compatible chemical 
lipid stains to delineate cell boundaries, such local grouping of label molecules should be possible 
in many, but probably not all, regions of a neuron. Note that chemical lipid stains can tile the 
membrane with high density, approaching that of the osmium stains used to label lipids for 
electron microscopy. In any ROI where this is possible, we will have identified the neuron to 
which that ROI belongs. This should enable a form of error-correction that would allow 
morphology-based connectome mapping to bridge across otherwise un-traceable gaps, such as in 
long-range axon fascicles. In an exemplary scheme, labels could be positioned directly on the inside 
(i.e., cytosolic rather than extracellular side) of the membrane via an appropriate fusion to a 
membrane-anchored protein, with the membrane itself marked by a chemical lipid stain. 

If we sample more labels per ROI than is strictly necessary, we can detect and correct labeling 
failures due to, e.g., failure to observe a given fluorophore on a given label molecule due to failure 
of antibody binding, fluorophore bleaching, or other causes that become relevant at the amplified-
single-molecule level. For example, to collect all 18 labels in an 18-cassette scheme, the well-known 
solution of the Coupon Collector Problem shows that we require 63 samples on average, whereas 
we have 125 samples if we observe an ROI of (100 nm)  with label molecules packed at a density 
of one per 20 nm cube. 

Optimal distribution between address and value bits 
In the address-value barcoding scheme, ⌈log 𝐶⌉ epitopes are needed to encode the identity of the 
cassette, and it follows that the rest of the epitopes can be dedicated to labeling the possible 
values that can be assumed by the cassettes upon recombination. With 𝐾 orthogonal epitopes and 
corresponding spectrally orthogonal fluorophores available, it follows that the number of possible 
distinguishable phenotypes is 

 𝑷 = 𝟐𝑲 ⌈𝐥𝐨𝐠𝟐 𝑪⌉ 𝑪
  (2) 

It is interesting to note that, ignoring the ceiling operation (i.e., allowing fractional fluorophores), 
𝑃 achieves its maximum for fixed 𝐾 when 𝐶 = 2𝐾/𝑒, where 𝑒 denotes the base of the natural 
logarithm. Alternatively, denoting by 𝑓  the number of fluorophores used to label cassettes, we 
find that 

 𝒇𝑪 = 𝑲 − 𝐥𝐨𝐠𝟐 𝒆  (3) 

Perhaps counter-intuitively, the information obtained from an address-value barcoding system is 
maximized when nearly all fluorophores are used for address bits. Therefore the optimal strategy 
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with 8 fluorophores would use 2 = 128 cassettes, each encoding only two possible values, thus 
generating 2 = 3.4 × 10  possible barcodes. A barcoding scheme with 128 cassettes is 
impractical, but fortunately even distributions with far fewer cassettes are capable of generating 
huge diversities, see Figure 7-3B. 

Practical implementations of the address-value barcodes 
In practice, given 4-value cassettes (two inversion units), it would be possible to barcode the 
entire brain of any animal with at most 32 cassettes. With 8-value cassettes, at most 16 cassettes 
would be necessary. Hence, in the case either of 4-value or 8-value cassettes, 7 fluorophores should 
be sufficient to barcode the brain of any animal, with either 2 fluorophores dedicated to values 
and 5 dedicated to cassettes (for 4-value cassettes), or 3 fluorophores dedicated to values and 4 
dedicated to cassettes (for 8-value cassettes). 

In some cases, it may be useful to have an additional “constant” fluorophore to indicate the 
presence of the label proteins, irrespective of particular addresses or values. It could also be useful 
to reserve one or more fluorescent colors for dense chemical (non-genetically-encoded) staining of 
the cell membrane. In any case, 𝐾 < 10 orthogonal fluorophores should suffice for most 
applications, and we will quickly become limited by the available orthogonal recombinase sites for 
achieving a sufficient number C of cassettes, as well as by the ability of each cassette to generate 
a sufficiently uniform distribution (see Appendix 1, Chapter 13) over a large number of possible 
values. 

 

Figure 7-3: Scaling of the Address-Value Barcoding System (A)  The number of distinguishable 
phenotypes 𝑃 that can be read out in a single wash is plotted as a function of the number of fluorophore-
epitope pairs 𝐾 for the 𝜌 ≫ 1/𝑉 strategy with 2  cell colors derived from bulk mixing (i.e., digital 
BrainBow), and for the 𝜌 ≪ 1/𝑉 address-value barcoding strategy with the optimal number of cassettes 
𝐶 = 2 /𝑒 at any given value of 𝐾, where 𝜌 is the density of proteins and V is the resolution voxel size. 
The address-value barcoding system is exponential in log space. (B) The total number of distinguishable 
phenotypes that can be generated using 8 fluorophores is shown as a function of the number of cassettes 
that are used. Evidently, the labeling strategy achieves its maximum value for a large number of 
cassettes, yet the absolute number of barcodes generated is enormous even for many fewer cassettes. 
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Address-Value Barcoding for the Zebrafish Connectome 
Overview 
We now present two address-value barcoding strategies for the larval Zebrafish connectome which 
can be implemented using only 𝐾 = 6 fluorescent colors and epitope/antibody pairs (which is 
readily achievable). The strategies differ in the tradeoff they make between the number of 
orthogonal recombination sites and the number of values encoded per cassette. If 4-value cassettes 
are used (e.g., Figure 7-2), 9 such cassettes would achieve 262000 labels, resulting in 68% of 
neurons having unique labels and an expected degeneracy of 〈𝑀〉 = 1.38 (see Appendix 4, Chapter 
13). Alternatively, with 10 cassettes, one could generate > 10  barcodes, resulting in 91% of 
neurons being uniquely labeled and an expected degeneracy of 〈𝑀〉 = 1.1. On the other hand, if 8-
value cassettes are used, only 6 such cassettes are necessary (e.g., 3 orthogonal Cre/Lox sites and 
3 orthogonal Flp/Frt), although this would yield only 118000 effective barcodes under the 
assumption of 2.8 bits of entropy per cassette, resulting in 43% of neurons being uniquely labeled 
with an expected degeneracy of 〈𝑀〉 = 1.85. Under the assumption of 100 μm axons and one axon 
per neuron, we crudely estimate (Appendix 4, Chapter 13) that even a degeneracy of 〈𝑀〉 = 2 
would only lead to on the order of 10 axon-tracing errors in the Zebrafish brain using tracing 
algorithms similar to today's automated EM segmentation algorithms (299), as compared with 
tens of thousands of errors in the absence of barcoding3. 

Cassettes 
The proteins produced by the cassettes could either be single scaffolds displaying multiple epitopes 
(e.g. (281)), or fusions of multiple scaffolds, each encoding a single epitope. In one possible design, 
the address epitopes could be displayed on one scaffold coded for by the region directly following 
the cassette. This scaffold could be connected by a floppy linker to a second scaffold displaying 
the value epitopes, coded for by the inversion units. 

Readout 
Regardless of whether one uses 4-value cassettes or 8-value cassettes, 6 fluorophores and 
epitope/antibody pairs are sufficient to read out the barcode in this approach. Following 
recombination, the cassettes produce protein scaffolds displaying some combination of the six 
epitopes. In the case of 4-value cassettes (Figure 7-2), 2 epitopes would indicate the result of 
recombination while 4 epitopes would indicate the cassette identity; in the case of 8-value 

                                         
3 The automated algorithm of (299) makes roughly 1 error in every 29 micron segment (see Appendix 4, 
Chapter 13). So, assuming 100 μm long axons, only roughly 5% of axons would be traced correctly in the 
absence of barcode-based error-correction (2 standard deviations, assuming 3 ± √3  errors per axon), i.e., > 

95000 errors. Put another way, with no barcoding, 95% of axons would be traced incorrectly, whereas with 
the proposed barcoding scheme only 0.01% of axons would be traced incorrectly, assuming the underlying 
morphological tracing error rate was equivalent, even with 〈𝑀〉 = 2 barcode degeneracy. 



106 
 

cassettes, 3 epitopes would indicate the result of recombination while 3 epitopes would indicate 
cassette identity. Imaging would be performed with confocal microscopy following primary and 
secondary antibody stains against these epitopes, with a different fluorophore corresponding to 
each epitope. 

Roadmap 
Zebrafish/Drosophila 
In order to implement the Zebrafish barcoding scheme discussed here, it would be necessary to 
insert either nine 4-value cassettes or six 8-value cassettes into the Zebrafish and demonstrate 
orthogonal recombination. This would require the use of 6 fluorophores, which is readily 
achievable. In addition, the barcoding scheme discussed here would require the demonstration of 
protein scaffolds that can display up to 6 orthogonal epitopes, all of which can be simultaneously 
imaged using antibody staining. We believe that these demonstrations should be possible with 
modest modifications of existing technology. In Appendix 6, we propose an alternative strategy 
that can be implemented with fewer modifications of existing technology. 

Neither of these cases is likely to generate absolutely unique barcodes across all 100k Drosophila 
or Zebrafish neurons: some barcodes will be found twice in the brain. Appendix 4 (Chapter 13) 
discusses how even such imperfect barcoding can be used to substantially error-correct automated 
morphological tracing algorithms. 

Mouse 
For barcoding at the level of the 10  neurons in the mouse brain, an address-value scheme with 6 
fluorophores, 14 orthogonal recombination sites and 4 values per cassette would yield 262 million 
barcodes, sufficient for tracing in the mouse brain. Alternatively, a system with 7 fluorophores, 10 
orthogonal recombination sites and 8 values per cassette would yield 282 million barcodes (under 
the assumption of 2.8 bits per cassette). 

Primate 
Extending the address-value scheme for the mouse to 14 orthogonal recombination cassettes 
should be sufficient to barcode primate brains. We discuss in Appendix 2 (Chapter 13) some 
potential schemes by which 16 effectively orthogonal recombination sites could be achieved 
through rational design. 

Conclusion 
We proposed to harness the multicolor nature and high spatial resolution (up to 20smaller than 
the diffraction limit) of expansion microscopy to permit high-density labeling of neurons with cell-
identifying sets of barcode-encoding peptides. We have described how the combination of powerful 
emerging optical and genetic technologies – multiple orthogonal recombinases, multiple useful 
epitopes and orthogonal color channels, and amplification of fluorescent signals from single label 
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protein molecules – could be used to generate a huge diversity of “color codes” for individual 
neurons. 

If all neurons in a brain can be labeled uniquely, as is possible in many of the proposed schemes, 
then we have converted connectomics from a pure morphological tracing problem (with error rates 
growing exponentially with tracing length) into a distance-independent barcoding problem, much 
as would be the case in proposed in-situ nucleic acid barcoding strategies (277). Even if the 
barcode diversity is only comparable to, or even slightly less than, the number of neurons in a 
brain, we still enable a powerful form of error-correction that is not possible in greyscale electron 
microscopy, with the potential to hugely reduce the error rates of automated tracing algorithms 
(Appendix 4, Chapter 13). 

Notably, unlike in in-situ sequencing or sequential FISH barcoding approaches, only one round of 
labeling and imaging is required, so long as we can achieve roughly 7-10 orthogonal color channels. 
If fewer orthogonal optical channels can be achieved, we can resort to sequential readout 
approaches to implement the same ideas. This could be done with sequential immuno-staining if 
enough epitopes are available, and we have also suggested how RNA FISH or RNA FISSEQ could 
implement similar notions of splitting barcode information over multiple molecules or structures in 
a region of interest. The RNA FISH case could also be used in a single-wash setting if there are 
enough orthogonal color channels, effectively using the RNA as a hybridization scaffold rather 
than its derived protein as an epitope scaffold. 

Optical connectomics, of the type described here, appears to require significant yet not prohibitive 
resources. Following 20x expansion, a 1 mm  piece of brain would be expanded to 8000 mm =

8 × 10 μm . A confocal microscope with a 60x objective and a detector with an area of 1 cm  
has a field of view corresponding to 166 μm × 166 μm × 0.7 μm = 20000 μm . Assuming 200 ms 
per field of view when imaging in ≈ 10 color channels, we find that 2.54 microscope-years would 
be required per cubic millimeter of pre-expansion brain. Amortizing $1M microscopes over a three-
year project, the raw connectomic data acquisition for even the smallest whole mammal brains 
would thus cost on the order of $10M to $20M using this scheme. 

Notably, with unique or near-unique multicolor labeling of neurons, it is likely that the image 
analysis problem for axon tracing could become accessible to simple automated algorithms, with 
multicolor error correction potentially enabling extremely high accuracy. Multicolor optical 
approaches could enable error-resilient automated tracing approaches through  
fluorescent barcoding and spatial multiplexing, as well as extensions to molecularly annotated 
connectomics [17] through temporal multiplexing.   
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Chapter 8   
A New Structure for Scalable Research 

 

Foreword 
The ideas contained in this chapter are derived in large part from conversations held in the first 4 
months of 2019 with Ed Boyden, Joi Ito, Louis Kang, Jessica Traynor, Daniel Oran, and Laura 
Deming, with additional feedback from Karl Ruping and Robert Hughes. I also acknowledge 
Adam Marblestone for reviewing the final essay and offering useful feedback. 

Summary 
The ordinary lifecycle of a technology begins with the inception of an idea, runs through the 
creation of a proof of concept, and ends with creation of a product, usually in a for-profit venture. 
However, there are some projects that could have widespread impact if they were scaled up, but 
that are not ripe for traditional for-profit investment. Examples include the early development of 
the integrated circuit and the human genome project, neither of which had clear commercial 
applications at the time of their inception, but both of which required substantial, focused 
research and development over ~10 years to generate a commercializable technology. Projects such 
as these cannot be pursued efficiently either in academia or in a for-profit setting. For these 
projects, a new research structure is required that funds hyper-focused projects at a high level for 
a strictly limited period of time, and that emphasizes specific metrics, collaboration, and scale. I 
lay out the case for this kind of research non-profit, termed a focused research organization 
(FRO), and propose a systematic program to identify promising targets for and to fund FROs. 
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Introduction  
cademia excels at producing new discoveries and novel ideas, but the vast majority of 
new ideas and technologies are never reproduced or achieve large-scale impact. In part, 
this is because academic culture prizes individual recognition (as articulated most clearly 

by (300)): projects that require larger coalitions of researchers are typically unpalatable to 
academics. However, larger coalitions are vital for the development of scientific ideas (301), and it 
has been noted by the draft roadmap for the second phase of the BRAIN initiative that 
“dissemination [of new technologies] to the research community will be critical to the BRAIN 
Initiative’s success” (302). The question of how to incentivize researchers to participate in larger 
coalitions and work towards long-term goals is still open. 

Traditional for-profit companies can scale scientific or technological approaches and achieve 
widespread societal and technological impact when the impact is profitable. However, there is a 
large class of basic research projects, such as the Human Genome Project or the early development 
of integrated circuits, that likewise need to be scaled in order to achieve impact, but that will only 
realize their value on timescales beyond the horizons of typical venture investment, or that depend 
for their impact on the results being public. The Human Genome Project was funded publicly and 
the data was made available publicly, while the development of semiconductor technology was 
funded in large part by industrial labs, such as Bell Labs. Modern examples include the mapping 
of the mammalian connectome (61, 303, 304), or several other recently proposed neurotechnology-
oriented projects (6); the translation of nanofabrication technologies from basic materials research 
to commercial applications (305); and the development of approaches for carbon capture or 
geoengineering (306). These projects require large amounts of funding, a focused and specific 
approach, and the contributions of many individuals with diverse skill sets, but do not lend 
themselves to funding through traditional academic or for-profit mechanisms. 

Here, I argue that in order to support these projects efficiently, a new structure for basic research 
and development is necessary. I propose that these projects could be pursued in a dedicated 
structure, termed a focused research organization (FRO), in which the incentives are specifically 
aligned to enable highly-powered individuals to work together towards to achievement of specific 
technological goals. These organizations would develop the key IP necessary for company 
formation and then spin out for-profit companies, recouping the cost of development through the 
revenues or equity thus generated. 

An Example: Scaling Connectomics 
As an example of a problem that cannot be scaled either in an academic or a traditional for-profit 
setting, I will focus on connectomics. As discussed in Chapter 7, the connectome is the set of all 
connections between neurons in the brain. The cost of the microscopes alone that would be 
necessary to gather the raw data for the mouse connectome would likely be $5M-$50M, depending 
on the method used, so the funding scale is beyond what can be mustered in academia. Collecting 

A
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the connectome will require applying a single approach to a very large volume, so it will require a 
specific and focused approach. Moreover, regardless of the method one uses to gather the data, 
mapping the connectome will require a full-stack approach including basic biology and animal 
handling, tissue processing, and computation, so it will be necessary to coordinate the efforts of 
many individuals with disparate skill sets. Finally, the value of the connectome will likely only be 
realized once the connectome is mapped, so it is not yet possible to lay out a business model or 
propose a specific therapeutic target as would likely be necessary to establish a for-profit business. 
Thus, the connectome seems to fit well into the category of projects I define above, which do not 
lend themselves naturally either to the academic or for-profit models. Indeed, it has previously 
been recognized that connectomics cannot be scaled within the context of academia, and an 
ambitious IARPA-funded project termed MICrONS was established in 2016 with the goal of 
mapping 1 mm  (0.2%) of the mouse brain (e.g. (307)). The MICrONS project achieved some but 
not all of the objectives I lay out here, and I will discuss below its successes and failures. 

Academia Incentivizes Novelty, not Focus 
Academics are funded primarily by federal grants, on the basis of work published in academic 
journals through a process of peer review. Innovation is one of the key criteria by which grant 
applications and academic publications are judged. To fulfill the innovation criterion, academics 
are incentivized to distinguish themselves from others and to pursue novel research. In the 
academic sciences, novelty comes in the form of new discoveries, whereas in academic engineering 
it comes in the form of proofs of concept. 

This emphasis on novelty leads to a constant stream of new ideas coming out of academia. In 
addition, the freedom to pursue novel ideas and achieve recognition for creativity is used to 
incentivize academic researchers to work for low salaries. However, at the same time, the emphasis 
on novelty and the incentive to distinguish oneself from others discourages collaboration and 
sustained development of ideas once those ideas are published. In particular, this incentive 
structure leads to three major limitations4: 

1) Accountability:  There is little incentive in academia to produce work of higher quality 
than what is necessary for publication in a journal, which is typically much lower than the 
quality that is necessary to achieve impact. This is a fundamental source of the 
reproducibility crisis: results do not need to be reproducible and techniques do not need to 
be widely adoptable in order to be published, de-emphasizing quality. 

                                         
4 I wish to distinguish the critiques I level here from prior critiques, including critiques of the inability of 
academic funders to fund high risk/high reward research, or the general failings of the academic publishing 
system. Although the conservative nature of funding organizations is certainly a challenge, I will critique a 
different aspect of academia, which is the inability of academic labs to achieve goals that require a coherent 
dedication of large amounts of resources. 
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2) Transparency:  Because the currency in academia is recognition, academia is plagued by 
large first-mover effects, and as a result, academics are incentivized not to share their 
progress with others. This leads to enormous inefficiencies as many labs often pursue the 
same work in parallel. Moreover, researchers are unable to learn from the failures of others’ 
experiments. 

3) Collaboration: Because of the strong emphasis on novelty and individual achievement, it 
is very challenging to incentivize graduate students to collaborate with each other within a 
lab, and it is challenging to incentivize labs to work together. Having many authors on a 
paper dilutes individual recognition, which can be fatal for young and unestablished 
scientists. 

Together, the pursuit of novelty prevents academics from focusing their resources on specific 
problems in the way that would be necessary to accomplish large-scale research objectives. For 
example, in the case of the connectome, one could imagine that a project would start as a 
collaboration between three labs, one doing tissue handling, one focusing on microscopy, and one 
focusing on computation. However, the tissue handling group could quickly conclude that it would 
be able to publish a first paper on their barcoding method without the other labs, and would 
spend a year studying schizophrenia in order to collect the scientific discoveries necessary for that 
paper. Their paper, a promising technological advance with a great example of a scientific 
application, might come out in Science two years after the project began. Meanwhile, the 
microscopy lab would likely dedicate their resources to inventing a new kind of microscope rather 
than optimizing existing microscopes for the purpose, even if the existing microscopes would be 
technically superior. Their efforts would be rewarded with a paper in Nature Methods. Finally, the 
graduate student in the computational lab working on image processing might lose confidence that 
she would ultimately get first-authorship credit for her contribution, and switch to a different 
project analyzing cryo-EM data of the autophagosome. The project would lose institutional 
knowledge and expertise, but she would rapidly gain two or three papers at ICML. In this 
scenario, each lab does extremely well, but after two years, they are no further towards the 
connectome than they were at the start of the funding cycle. 

The problem was well-articulated in a recent article about the need for a national network of 
neurotechnology centers to scale methods like brain activity mapping and connectomics. The 
authors wrote, “Many of these essential operations [e.g. microscopy, computation] may not be 
perceived, in isolation, as sufficiently cutting-edge to be fundable. Further, many will also be 
inappropriate for graduate or post- doctoral researchers; instead, to ensure their reliable execution, 
these activities could be better carried out by professional scientists and engineers. Yet it is 
generally impossible to sustain skilled and experienced technical personnel through short-term 
single-investigator funding” (6). 
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Academia occupies a critical point in the innovation cycle, as the primary source of new ideas, but 
it is unreasonable to expect that it can align the incentives of multiple disparate researchers and 
labs to pursue complex, highly-coordinated objectives over an extended time period. 

Focused Research Organizations 
For these projects, that lie between academia and traditional for-profit ventures, I propose the 
establishment of focused research organizations (FROs). These FROs would be small, well-funded 
teams, incorporated with specific research objectives in mind. They would have dedicated space 
and full-time scientific staff, and would be funded at a high level compared to typical academic 
projects. They would be led by one or more principal investigators, who would be specific to the 
project: to prevent dilution of attention and to avoid the funds being diverted to fund traditional 
academic projects, the leaders of the projects would be prohibited from having active academic 
appointments (although faculty could serve in an advisory role). The operation of these FROs 
would have three defining characteristics: 

Metric-driven: Impact depends more on quality than it depends on novelty. For that reason, 
FROs should be driven by metrics: the amount of brain tissue that can be processed in a given 
amount of time, for example, or the number of assays that reproducibly confirm the same 
hypothesis. These metrics would be determined at the outset of the project (e.g. included in the 
proposal to form the FRO), and would be used by a board of directors to monitor the progress of 
the FRO over the funding period. Depending on the formal structure of the FRO, the metrics 
would be used to insulate the FRO from traditional academic incentives or from market forces, 
and bonuses could conceivably be tied to the attainment of metrics. 

A corollary of being metric-driven, rather than novelty-driven, is that the FRO will be able to 
align its incentives with academics easily. Collaboration with academics will lead to the 
introduction of new ideas and insights into the FRO’s pipeline, allowing it to improve its progress 
towards its metrics, while the academics can leverage the data generated by the entity to publish 
novel scientific findings. The FRO has no incentive to keep its progress secret except as necessary 
to protect IP: once IP is filed, the FRO should communicate (and indeed, might be required to 
communicate) with for-profits and academics as much as possible to solicit feedback or insight. 
For example, whereas getting scooped can be fatal in an academic setting, just as being second to 
market can be fatal for a for-profit, the FRO has no competitors since any progress towards the 
final metric goals is considered success. 

Team-oriented:  Scaling projects requires alignment of the efforts of many talented individuals. 
This is not possible in an academic setting, because academics are driven by authorship status on 
papers, and are intrinsically disincentivized from collaborating in large groups. For this reason, it 
is important that the incentive structure for individuals be closer to the structure found in a 
company than to that found in academia. Individuals should receive monetary compensation 
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comparable to that of for-profit companies. In addition, in lieu of the equity they would receive at 
a for-profit, they should receive equity in the for-profit companies that spin out. Finally, they 
should have opportunities to move into for-profit spin-outs as a way of affording them career 
advancement opportunities. 

Limited in scope:  Tenured academic labs and for-profit companies are both unlimited in their 
scopes – they can continue to operate as long as they are productive or profitable, respectively. By 
contrast, the goal of the FRO is to achieve some key metrics necessary to transfer technology to a 
for-profit. For that reason, it should be strictly limited in scope to avoid mission creep. If the 
metrics were not met (or at least reasonably approached) at the end of a well-defined period, the 
project and technology should be reevaluated. On the other hand, if the metrics were achieved, 
the expertise obtained in the process should transfer into the for-profit companies that spin out. 

As an example, a reasonable FRO in the biotech space might require $15M in direct costs over 3 
years, sufficient to hire 10-15 people at an average salary of $150,000/yr, with sufficient reagents 
and capital equipment expenditures. 

Comparable Efforts 
Non-Profit Research Organizations 
Large, highly-focused basic research projects have historically been funded on an individual basis. 
Very large-scale, highly-coordinated efforts are commonplace in the experimental physical sciences. 
The LIGO gravitational wave observatory was constructed with a total cost of $620M, and the 
Large Hadron Collider had a total cost of $13.25bn as of the discovery of the Higgs Boson, with an 
operating budget of roughly $1bn/yr (308, 309). In the biological sciences, large-scale efforts are 
much less common, although the Human Genome project was funded with an initial investment of 
$3.8bn (6), and more recently, the ARMI regenerative medicine initiative (also a non-profit) has 
raised more than $270M. 

However, not every effort needs to be funded at such a large scale, and there is ample evidence 
(especially in biology) that projects funded in the range of $5M-$20M can also achieve 
transformative results. Several research institutes, such as the Allen Institute for Brain Research, 
the Howard Hughes Medical Institute, and the Broad Institute, have made outsized contributions 
to the fields of biology and neuroscience through the establishment of small, highly focused 
research efforts. The Allen institute provided the neuroscience community with a compendium of 
in-situ hybridization assays for the great majority of genes in the genome, which has proven to be 
transformative for research, for a total cost on the order of $50M (38, 310, 311). It is now focused 
on obtaining the first cubic millimeter of densely mapped connectome. Janelia has deliberately 
established project teams with the goal of transforming proofs of concept into workable tools, and 
has produced the Neuropixels electrophysiology device for a cost of ~$5-10M (32), and the gCaMP 
molecular calcium indicator for an unknown total cost (312), both of which are proving 
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revolutionary for neuroscience. In the area of genomics, the Broad Institute has established several 
cell atlasing efforts, which are likewise possible due to its relatively corporate structure (with a 
high ratio of career to academic staff) and provision of core flow sorting and sequencing facilities. 
These projects have mostly shared the criteria outlined above: strictly limited scope, a focus on 
the team rather than on individual attainment, and a focus on metrics rather than on novelty. 
And, notably, most of these projects likely could not have been accomplished in a traditional 
academic or for-profit setting: as noted by the BRAIN 2.0 Working Group’s draft report in 2019, 
“making 1,000 units [of Neuropixels] exceeds $2 million, well out of the reach of most academic 
labs,” and “highlights a necessary departure from standard business models for dissemination of 
lab-use neuroscience tools.” 

Despite these major successes, however, most institutes (including the Broad and Janelia) remain 
dominated by the academic research model. As noted in a retrospective, Janelia has found that 
“without an opposing force provided by management, there is a slow, steady drift toward a more 
conventional environment increasingly focused on maintaining successful programs and 
documenting individual achievement at the expense of risk taking and collaborative, 
interdisciplinary work” (313). Systematically counteracting this drift and maintaining a culture of 
high-impact, goal-driven, risk-taking work may require regular disassembly of the research 
apparatus,  

For-Profit Research Organizations 
Many industrial labs exist that could also establish the kinds of projects described here. 
Historically, Bell Labs and Xerox-Parc are the most famous examples, but modern examples 
include Google X and DeepMind, both owned by Alphabet. However, development of technology 
within an industrial lab can stymie innovation on the whole, since the IP may not be made readily 
available for further development, which was the case with Bell Labs before the 1956 consent 
decree (314). Moreover, most industrial research labs have become more focused in the past two 
decades, working primarily on core product development (315).  

In addition, for-profit companies (or investors) face challenges associated with the limited lifetime 
of patents and the time-value of money. Patents in the US are limited to 20 years: even if the 
genome had been deemed patentable, the patents would now be nearly expired, just as genetic 
medicine is beginning to come of age. On the other hand, the time-value of money (i.e., the 
opportunity cost of investing one’s money in a research project that is unlikely to generate 
substantial returns in the short term) was identified in the BRAIN 2.0 whitepaper as one of the 
major factors working against for-profit development of neurotechnologies (302), since it inflates 
the opportunity cost of projects with long development cycles relative to similarly-priced, shorter 
projects. This makes it particularly hard for for-profit companies to justify investing in the kinds 
of projects described here. 
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Government Programs 
DARPA and IARPA have attempted to achieve the goals outlined here by issuing grants (or 
contracts) focused on deliverables, rather than on papers or novelty. The MICrONS project, for 
example, is a connectomic initiative funded by IARPA in 2016, with $100M divided across three 
teams for 5 years, and its results support the hypothesis that a dedicated research support 
structure is necessary for scaling academia effectively. Of the projects, a $18.7M grant to the Allen 
Institute appears to have succeeded in scaling a connectomic imaging technology to the level 
needed to achieve the 1 mm  reconstruction goal. By contrast, a similarly-sized grant to a 
collaboration between Carnegie Mellon, Cold Spring Harbor, Harvard, and MIT, has resulted in 
multiple publications, but the publications from different institutions are largely unrelated to each 
other (e.g.  (286, 316) and a forthcoming publication from the Boyden lab) and generally include 
authors from only one of the participating institutions, suggesting a failure to establish a highly 
focused, team-oriented research culture. After 3 years of research, the progress of a third, $28M 
project at Harvard is unclear. I conclude from this that an existing, non-academic structure for 
research is likely necessary for large grants to be successful. 

Moreover, I propose that although the focus on deliverables is preferable to a focus on novelty, a 
focus on metrics (such as the rate of reconstruction, rather than the total reconstructed volume) 
would have been even more preferable. For example, IARPA would certainly prefer that the Allen 
Institute project work for 5 years on systems and technology improvements and finally produce a 
tenth of a cubic millimeter in one day’s work, implying the ability to scale to the whole brain in 
5000 days (or fewer), than it would for the Allen Institute to apply an existing technology over 5 
years to produce a single cubic millimeter, implying the ability to scale to the whole brain in 2,500 
years. 

Implementation 
Implementing the program described here has two challenges: finding a sustainable structure for 
the research organization, and finding a sustainable funding mechanism. 

Structure 
Non-profit or for-profit 
The specific charter according to which FROs are established will determine their incentive 
structure and susceptibility to corrupting forces, such as market forces or recognition incentives. 
As described above, I am specifically interested here in the set of projects for which a traditional 
for-profit funding model will not work, either because the time needed is beyond the time horizon 
of a typical venture fund, or because there are is no clear profit model. Nonetheless, the question 
remains as to whether FROs could be established within a for-profit setting. 

If the FRO is established with a for-profit charter, then the charter must be established in a way 
that will allow the FRO to pursue its founding objectives (i.e. the metrics) without being 
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distracted by market forces or the whims of investors in the short term. The question, when 
leveraging a for-profit model for basic science research, is the degree to which the basic research 
objectives can be aligned with the profit-making incentives of the investors. If they cannot be 
aligned, the for-profit will find itself under pressure to pivot to more easily achievable goals with 
clear, marketable products, much in the same way that academics would find themselves under 
pressure to pivot to lower-hanging paper opportunities. In the specific case of the connectome, one 
could easily imagine that a for-profit would develop the automated microscopy and tissue handling 
systems necessary to map the mouse brain at scale, but would then get distracted marketing those 
systems or selling connectomes of small volumes as a service, rather than mapping the entire brain 
of a single mouse, which is necessary to construct the complete connectome. 

In rare cases, it may be possible to align basic research incentives with the incentives of for-
profits. Celera was founded in with the goal of sequencing and then patenting the genome. It 
received $300M in funding and succeeded in completing a draft of the genome at the same time as 
the publicly funded, $3bn genome project (although direct comparisons are unfair, since Celera 
relied on much of the technology developed by the publicly funded project) (6, 317–320). Indeed, 
if the connectome could be patented, there is no doubt we would be able to raise substantial 
private funding to acquire it, and likewise for many other large-scale scientific endeavors. 
Unfortunately, it was announced in March 2000 by Bill Clinton and Tony Blair that the sequences 
of human genes would not be patentable, and the Supreme Court affirmed in 2013 that products 
of nature, such as gene sequences, are not patentable, ruling out a Celera model for funding FROs. 

Several intermediates between for- and non-profits exist, such as low-profit LLCs, which are for-
profit companies structured in a way that allows charitable foundations to donate money to them 
while also receiving a return (321). The directors of social purpose corporations have a fiduciary 
responsibility to a social purpose set forth in the articles of incorporation. Nonetheless, in both 
cases, these models are intended for organizations that do not otherwise qualify as non-profits, for 
example because they are in direct competition with for-profits (322). Neither option circumvents 
the fundamental issue that the FROs by assumption lack a clear plan for making money in the 
short term, before the metrics are achieved. 

By contrast, the non-profit model provides several concrete advantages. Chief among these is the 
ability to collaborate directly with academics; collaboration between for-profits and academic 
institutions is often fraught with conflict-of-interest due to restrictions on for-profits benefiting 
from public grant funding. In addition, non-profits are free and encouraged to share information 
about their approach, and have more flexibility than for-profits in defining their overarching 
incentives. Not surprisingly, most existing examples of FRO-like projects (see “Comparable 
Efforts,” above) took place in a non-profit context. 
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More creative intermediates also exist. For example (see also “Value Capture,” below): 25% of the 
shares of Novo Nordisk and 75% of its voting shares are owned by the Novo Nordisk Foundation, 
a non-profit that is funded through the profits of the Novo Nordisk for-profit pharmaceutical 
company. In this way, Novo Nordisk is still able to attract private investment through the 75% of 
shares that are owned by other shareholders, but a large percentage of its profits are reinvested in 
biomedical research through the foundation (323). In a case in which a non-profit FRO would spin 
off for-profit companies that it would partially own (see “Value Capture,” below), for-profit 
investors could be induced to invest in the non-profit by a guarantee to be able to invest in the 
for-profits down the line, perhaps at a predetermined valuation. 

Similar tradeoffs are on show in the case of OpenAI. OpenAI began as a non-profit corporation, 
inspired by the goal of achieving full transparency. However, it switched to a “capped-profit” 
corporation in 2019 as a way of attracting capital. Investors may now make money off of it, up to 
a 100x return, after which any remaining returns will go to an overarching non-profit (324). 
However, this model is unlikely to apply directly to the FRO case, because it is predicated on a 
clear, existing business model. 

Umbrella Organizations 
One of the core concepts advocated here is that these focused research organizations should be 
limited in scope, being completely disassembled at the end of a predetermined time. Assembly and 
disassembly of a research apparatus incurs immense overhead, so it is not possible for endowed 
institutions like the Broad Institute or Janelia to completely disassemble and reassemble 
themselves on a regular basis. However, institutes such as these could serve as hosts for FROs, 
providing them with lab space and administrative support, to reduce the costs of initiating the 
projects. Alternatively, one could imagine the creation of a dedicated umbrella organization or a 
government program with the specific goal of initiating and supporting FROs. The umbrella 
organization would not conduct research itself, but would provide space, administrative support, 
and possibly funding for FROs, allowing for the systematic renewal of the research mission 
without the overhead associated with starting a new institute. Within the structure provided by 
the umbrella organization, projects could remain focused on big ideas with measurable outcomes, 
and would be free to fail fast.  

Funding 
Funding through gifts 
Unless an existing institution wants to commit itself to trialing the program described here, initial 
funding will need to come from philanthropists or donations from for-profits that believe in the 
necessity of changing the academic research model. Donations from companies or venture funds 
could be in exchange for a guarantee to be able to license (non-exclusively) the intellectual 
property generated by the effort, similarly to the funding structure for the MIT Media Lab. 
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Eventually, I hope that the federal government would recognize that in order to derive maximum 
value from the academic work it invests in, it should invest in maturing the most promising 
projects to the level of commercialization. The government could start a project to initiate e.g. 100 
projects per year, each at a funding level of $5M/yr for 3 years with no (or strictly limited) 
options for renewal. This would only require an annual budget of $1.5bn, a small fraction of the 
total federal research budget. Federal grants to these projects would be clearly differentiated from 
academic grants: for example, the presence of a clear, quantitative, and ambitious final metric 
would replace innovation as a central criterion for evaluation of proposals, and in contrast to 
many large federal grants, all participating researchers would be required to be primarily 
employed by the same research organization to ensure opportunities for close coordination. 
Projects that required additional funding to achieve maximum impact could subsequently seek out 
philanthropic funding on the basis of their achievements. There is a clear interest in funding these 
projects among federal agencies. The ARMI institute, a non-profit, raised $80M in defense funding 
for work on regenerative medicine (325). 

Value Capture 
There is ample evidence that academia fails to capture the value it creates. For example, 
companies funded by MIT graduates have $1.9tn in annual revenues; but revenues attributable to 
MIT IP are only roughly $2bn/yr, and MIT only captures roughly 1%-2% of that value (326, 327). 
There may be many reasons for this disparity, such as the limited lifetime of patents (328). 
Regardless, only 0.2% of the revenues of companies founded by MIT graduates would suffice to 
completely fund MIT’s operating budget, including replacing tuition and federal research funding. 
Non-profit FROs could actively seek to found for-profit companies, taking either a small 
percentage (e.g. 0.5%) of the revenues of the for-profit or a large percentage of its shares. These 
returns would almost certainly be realized long after the FRO has disbanded, but they could be 
returned to the umbrella organization to fund the creation of future FROs. A similar model has 
been adopted by Novo Nordisk, as described above. This conclusion mirrors a recent conclusion 
from the Brookings Institution that most university technology transfer offices consume more 
resources than they produce, and that universities should focus less on licensing technology and 
more on founding startups (329). 

Conclusion: 
Given the considerations above, I propose the creation of a new, non-profit organization with the 
specific goal of establishing the research facilities and the funding pipelines necessary to initiate 
and support metric-driven, team-oriented FROs. The FROs should be funded at a total level of 
$5M/year for 3 or 4 years, after which they should terminate, to allow for a ground-up 
reevaluation of their approach and goals. In addition to the board of directors of the overarching 
organization, each FRO should have its own board of directors, responsible for monitoring 
progress towards the metrics and disbursing funding. The FROs should each have their own COO 
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with experience from industry, to ensure that they function more as focused research efforts than 
as open-ended academic ventures. The umbrella organization should take responsibility for 
initiating FROs, and should focus on spinning off companies based on the research of the FROs. It 
should maintain a large stake in companies spun off in this way, as a way of ensuring its future 
existence and tying its future growth to the growth of its spinoffs. Along with capturing more of 
the potential value in academic research, this system would have additional beneficial effects for 
scientific culture. It would open a new pathway into basic science research for graduate students, 
postdoctoral researchers, or researchers from the private sector with good ideas and management 
experience but few high-impact publications. 
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Chapter 9   
Supplementary Information to Chapter 3 

Materials and Methods 
Overview 
Our standard workflow, elaborated upon below, consists of gel synthesis, followed by incubation in 
a patterning solution, typically a solution of fluorescein and a hydroxide in water. Subsequently, 
the gel was patterned using 780nm excitation on a 2-photon microscope. Following patterning, the 
patterning solution was removed, and different reagents (depending on the experiment) were 
deposited in the patterned locations. In the case of the silver patterning, gold nanoparticles thus 
anchored to the gel could then be grown by aqueous silver intensification, using the LI silver 
chemistry. Finally, the gels were shrunken by exposure to solutions of HCl or divalent cations and 
possibly dehydrated. For some experiments, different patterning reagents, deposition reagents, or 
shrinking processes were used, as described below. The experimental procedure for each figure is 
summarized in Table 9-3. 

Throughout, all washes were performed on an orbital shaker at 80RPM except during the 
shrinking and dehydration steps. 

Gel Synthesis 
Gels were synthesized as described elsewhere (37). In short, the monomer solutions are mixed from 
stock solutions of 10x PBS, 5M NaCl, 38% (w/w) sodium acrylate, 50% (w/w) acrylamide, and 
2% (w/w) N,N’-methylenebisacrylamide in concentrations given in Table 9-1 and Table 9-2, for 
the 10x gel and 20x gel monomer solutions respectively. Solutions were aliquoted and stored at -
20˚C. Prior to casting, the monomer solutions were kept at to 4˚C to prevent premature 
gelation. Concentrated stocks of ammonium persulfate (10% w/w) and 
tetramethylethylenediamine (TEMED) (10% v/v) were diluted 50x into the monomer solutions. 
The resulting gelation solution was then mixed thoroughly and added to a gel mold that was 
~0.17 mm tall and ~1 cm wide. Molds consisted of a glass slide for the bottom and a No. 1.5 
coverslip for the top, using two additional coverslips as spacers. The mold was placed at 37˚C for 
1.5 hours to allow for gelation. Following gel synthesis, the gel was washed twice in ~2-3 million 
times its initial volume in water for 30 minutes to ensure full expansion. 

Preparation for Patterning: 
Following expansion, expanded gels were cut into 2cm squares and transferred into a glass-bottom 
dish (Mattek, P50G-1.5-30-F) and incubated in 2ml patterning solution (below) twice for 30 
minutes each time. Except where otherwise indicated (Figure 3-1M,Figure 3-2D,Figure 9-4A), we 
used the 10x gel solution. Following incubation, a 40mm diameter coverslip (Fisher Scientific 22-
038-999) was placed over the well of the glass-bottom plate with the gels inside and excess 
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patterning solution was withdrawn, in this configuration the coverslip pressed the gel against the 
bottom of the plate helping to reduce sample drift and slowing evaporation. 

 

For direct deposition of streptavidin into the gel, as in Figure 3-1J, Figure 9-1D, and Figure 9-3, 
the patterning solution consisted of 333µM biotin-4-fluorescein (Biotium Cat. 90062) and 1.25mM 
rubidium hydroxide (Sigma, 402393-25G). 

 

For depositing NHS-activated fluorophores or reagents, such as biotin-NHS (Sigma, H1759), as in 
Figure 3-1B,D,F,H,I,K,L, Figure 9-2D (red bar), Figure 3-3, Figure 3-4, Figure 9-1A-C, Figure 9-2, 
Figure 9-5 and Figure 9-6, the patterning solution consisted of 500μM 5-aminomethyl fluorescein 
hydrochloride (Life Technologies, A-1353) and 2mM sodium hydroxide in water. 

 

For depositing with maleimide-activated fluorophores and nanoparticles into the gel, as in Figure 
3-2B-H and Figure 9-7, the patterning solution was made by reacting fluorescein-NHS (Life 
Technologies, 46409) to cysteamine (Sigma, M9768-5G) at 1mM concentration in water for at 
least 30 minutes prior to incubation. 

Patterning: 
Gels were patterned using an inverted Zeiss LSM 710 confocal microscope with a Chameleon Ultra 
II femtosecond pulsed IR laser set to 780nm, using a 40x 1.1NA water immersion objective. 
Within the Zen software, custom ROIs were defined for acquisition. The surface of the gel was 
identified by a decrease in fluorescence relative to the external patterning solution. Standard 
patterning conditions were 0.79µs pixel dwell time and a pixel size of 350nm, amounting to a 
patterning speed of 44cm/s, in pre-shrink dimensions. Unless stated otherwise, all patterns were 
generated using 2x line scanning. For Z-stacks, a 2µm step size was used. 

Laser power varied depending on the intensity of patterning desired. The optimal laser power for 
patterning depends strongly on the laser collimation, objective, gel composition and patterning 
solution composition. However, because fluorescein retains some of its fluorescence upon 
attachment to the gel, it is possible to optimize the patterning power quickly, by patterning 
rectangular prisms with different powers (as in Figure 9-2B,D). In this case, the patterns will 
begin to bulge outwards as the power increases, and one typically wants to choose the highest 
power at which bulging is not evident. It is important that this calibration be performed using 
patterns with similar depth to those that will ultimately be patterned, because the degree of 
patterning when patterning several adjacent layers in the axial dimension will in general be 
greater than the degree of patterning when patterning a single layer, because the patterning voxels 
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from successive layers may overlap. Unless stated otherwise, we used 128mW laser power, as 
measured using a power sensor (Thor Labs, S170C) in the image plane. 

 

For patterns in Figure 3-1B,D,F,H,K,M, Figure 3-2B-H except D (red bar), Figure 3-3, and Figure 
3-4A-C a Z-stack exposure was taken starting 10µm below the gel interface continuing 50µm 
inside of the gel to ensure that the patterns were at the surface of the gel for SEM visualization 
performed at the end of the process.  

 

For patterns in Figure 3-1I,J,L, Figure 3-2D (red bar), Figure 3-4D-F, Figure 9-1A-C, Figure 9-2, 
and Figure 9-5, Z-stacks were performed starting 50µm inside the gel. Figure 3-1I,J,L, Figure 3-2D 
(red bar), Figure 9-1A-C, Figure 9-2 and Figure 9-5 were done using Z-stacks that extend 50µm 
further into the gel.  

For the patterns in Figure 3-1I and Figure 9-2B,D, the laser powers are as follows, from left to 
right, in mW. Top row: 52, 60, 68, 76. Second row: 84, 91, 99, 107. Third row: 114, 121, 128, 136. 
Fourth row: 143, 149, 155, 161. 

For the patterns in Figure 3-2B-D except Figure 3-2D (red bar), each line was scanned either once 
or twice using the 40x objective, with variable laser power. The condition was indicated by tick 
marks above and to the left of the triangles, as follows: 1 tick mark, 12.5% laser power with 1x 
line scanning. 2 tick marks, 12.5% laser power with 2x line scanning. 3 tick marks, 17.7% laser 
power with 1x line scanning. 4 tick marks, 17.7% laser power with 2x line scanning. 5 tick marks, 
25% laser power with 1x line scanning. For patterns in Figure 3-2E-H, we used 17.7% laser power 
with 2x line scanning. To ensure that the patterns were at the surface of the gel for SEM 
visualization, patterns in Figure 3-2 except Figure 3-2D (red bar) were generated as Z stacks with 
2μm step size beginning below the surface of the gel and extending 50μm into the gel.    

For Figure 9-7, we used 25% laser power with 0.39µs pixel dwell time, with a 25x glycerol 
immersion objective. 

Deposition: 
We applied a specific and complementary chemistry for deposition depending on the reactive 
group patterned into the gel. Following patterning, the gels were washed four times in water for 
fifteen minutes each time to remove excess patterning solution. 

 For depositing fluoronanogold-streptavidin (nanoprobes #7416, hereafter referred to as 
fluoronanogold) onto patterns of 5-aminomethyl fluorescein as in Figure 3-1D,F,H,I,L, Figure 3-3, 
Figure 3-4, Figure 9-2A-D, Figure 9-5, and Figure 9-6 the gel patterns were first stained with 
biotin-NHS (Sigma, H1759). To do this the gels were washed in 1x PBS for 15 minutes before 
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performing the conjugation with 100µM biotin-NHS in 1x PBS for three hours. Subsequently, 
biotin-NHS was washed out three times in water for 30 minutes. Then, gels were washed once in 
1xPBS and positioned in the middle of the Mattek glass well, to prevent the gel or the 
fluoronanogold solution from coming into contact with the plastic rim of the dish. Fluoronanogold 
was diluted 30x to 2.7µg/ml into 300µL of 1x PBS and placed on top of gel. The samples were 
then left to stain for twelve hours on a shaker at room temperature in the dark. Fluoronanogold 
was then washed out four times in 0.1x PBS for an hour each time before two additional 10 
minute washes in water.  

 

For depositing Atto 647N-NHS onto patterns of 5-aminomethyl fluorescein, as in Figure 3-1K,M, 
gels were washed twice in 1x PBS for 15 minutes each time. Subsequently, Atto 647N-NHS 
(Sigma,18373-1mg-F) was diluted to 50μM concentration in 1x PBS and washed onto the gel for 
at least 4 hours. Because Atto 647N is positively charged and tends to partition into the 
negatively charged gel, gels were then washed twice in 200mM NaOH for at least 30 minutes each 
time, followed by three washes in 1x PBS for 30 minutes each time, followed by three washes in 
water for 15 minutes. By contrast, after staining aminomethyl fluorescein with a negatively 
charged dye, excess dye could simply be washed out in water. 

For depositing DNA onto patterns of 5-aminomethyl fluorescein, as in Figure 9-1A-C, gels were 
functionalized with biotin NHS at 1mM concentration in 1x PBS overnight, followed by three 
washes in water and two more washes in 1xPBS to remove excess reagent and prepare for the 
streptavidin deposition. Atto 647N-labeled streptavidin (Sigma, 94149-1mg) was then washed onto 
the gel at 40μg/ml in 1x PBS with 3% Bovine Serum Albumin overnight. The gel was then 
washed in 2.5mM Tris-HCl, pH 8, three times for at least 1 hour each time to remove excess 
streptavidin. DNA could then be deposited within streptavidin-functionalized gels by washing the 
gels in a solution with 10μg/mL biotinylated DNA in 1x PBS for 3 hours. DNA was subsequently 
removed by washing in water 3 times, for at least 15 minutes each time. 

For depositing maleimide-activated gold nanoparticles into patterns of fluorescein-cysteamine, as 
in Figure 3-2E,F,G,H, gels were washed twice in 1x PBS for 15 minutes each time. Subsequently, 
maleimide-functionalized 1.4nm gold nanoparticles (Nanoprobes, 2020A) were diluted to 5µM 
concentration in 1x PBS and washed onto the gel overnight. Gels were then washed twice in water 
for at least 30 minutes each time, transferred to a new container, and washed in water three more 
times for at least 30 minutes each time to remove excess gold. 

For depositing maleimide-conjugated fluorophores onto patterns of fluorescein-cysteamine, as in 
Figure 9-7, gels were washed twice in 1x PBS for 15 minutes each time. Subsequently, maleimide-
functionalized dyes were washed into the gel in PBS at 100µM concentration, and left to stain 
overnight. Gels were then washed three times in water, for at least 30 minutes each time. 
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Intensification: 
Following deposition of fluoronanogold, gels were transferred to a 35mm diameter petri dish 
(Corning 353001). The gels were then washed in 50mM EDTA pH 5.5 for 30 minutes. Gels were 
then immersed in 2mL LI silver solution (Nanoprobes #2013) and placed in a shaking incubator 
at 20˚C and 80 rpm for a variable amount of time, as described below. To halt intensification, 
gels were washed briefly in water once ~1-2 minutes and then three more times for 10 minutes. 
Remaining silver ions in the gel were removed prior to shrinking by washing in 50mM sodium 
citrate for one hour. Subsequently, the gel was washed four times in water for 10 minutes each 
time. 

For a given batch of samples, we determined the intensification time necessary to achieve the 
optimal density of silver by performing intensification on test samples for each of 40, 45, 50, 55, 
and 60 minutes. These test samples were then shrunken according to the protocols below, 
dehydrated, and imaged on a Zeiss Ultra Plus or Supra55 FESEM. Samples that were grown for 
too long would show bulging at the edges of the patterns as a result of steric hindrance during the 
shrinking process. Thus, the optimal intensification time for the batch was determined as the 
maximum growth time that did not lead to visible distortion in the SEM images. The remaining 
samples in the batch were then intensified for the optimal amount of time. Although there was 
significant batch-to-batch variability in the amount of intensification time necessary to achieve 
high-quality metallized patterns, the within-batch variability was found to be small, and this 
process robustly generated well-metallized patterns without distortion. 

Following intensification of the remaining samples for the optimal growth time, samples could be 
imaged as in Fig. 1F on a Nikon TI microscope with brightfield illumination, using an Orca Flash 
4.2 camera set to 16 bit gain 1/4, a 0.5NA condenser, and a Nikon Plan Fluor 20x objective. 

Shrinking: 
For Figure 3-1K,M, Figure 3-2, with the exception of Figure 3-2D (red bar), and Figure 9-4, gels 
were shrunken by washing first in 2mM HCl, followed by 20mM HCl and 200mM HCl, all in a 
glass chamber. Subsequent experiments determined that the 20mM and 200mM HCl washes were 
unnecessary to achieve full shrinking. 

For gels in Figure 3-1L,H, Figure 3-3, Figure 3-4A-C, Figure 9-2E, Figure 9-3, Figure 9-5B, and 
Figure 9-6, gels were shrunken using acid by transferring to a glass container and washing in 2mM 
HCl with 0.05% Tween-20 for 6 hours and again for another hour. Finally, gels were washed in 
2mM HCl for 30 minutes to remove residual Tween-20. Liquid was then removed and gels were 
left out in open air until completely dry, typically for 2 hours. 
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For Figure 3-4F and Figure 9-5A, the gel was shrunken, but not dehydrated, by washing in 2mM 
HCl with 0.05% Tween-20 before imaging. 

For Figure 9-1A-C and Figure 9-7 the gel was shrunken by washing 3x in 10x PBS for 15 minutes 
followed by washing in 1M MgCl2 3x for 15 min, and these gels were not dehydrated prior to 
imaging. 

Sintering: 
To ensure conductivity of the silver structures, sintering was performed using the same 
microscope, laser, and objective used for patterning. First, dehydrated samples were mounted on 
carbon tape, such that only the edge of the substrate was attached to the tape, and placed face 
down on a Mattek dish. This allowed patterns to be located on the microscope using transmission 
illumination. The samples were then imaged and brought into focus using 1.5mW 2-photon 
illumination intensity, with excitation at 780nm. 

For samples in Figure 3-3 and Figure 3-4B, sintering was then performed by capturing a single 
image of the field of view containing the pattern with a power of 15mW, using the same objective, 
pixel size and dwell time as used for patterning. The data in Figure 9-6B represents a mixture of 
samples for which sintering was performed with 15mW or 20mW exposures. As the difference 
between the two groups was not found to be statistically significant, the data from the two groups 
was lumped to improve the utility of the regression. 

Imaging: 
For Figure 3-1D,I,K, Figure 3-4D,E,F, and Figure 9-2C,D, samples were imaged on a Zeiss 
LSM710 with a 32x 0.8NA water immersion objective in either fluorescence confocal mode, or 
reflection confocal mode in the case of Figure 3-4E. The image in Figure 9-5A was obtained on the 
same microscope with a 40x 1.1NA water immersion objective. 

The post-shrink measurements of samples in Figure 3-1L and Figure 3-2D (red bar) were obtained 
using the LSM710 with a 63x 1.4NA oil immersion objective with the sample immersed in oil, to 
minimize optical aberrations. 

The post-shrink image in Figure 9-5B was obtained using the LSM710 with a 40x 1.3NA oil 
immersion objective with the sample immersed in oil to minimize optical aberrations. 

For Figure 3-1B, Figure 3-2E, and Figure 9-2A,B multi-photon imaging at 780nm was performed 
on the Zeiss LSM710, typically while the gels were still in the patterning solution. This imaging 
was performed using much lower laser power than the power needed for patterning. 

For Figure 3-1M and Figure 3-2B-D fluorescence imaging was performed using a Perkin Elmer 
spinning disk (CSU-10 Yokogawa) confocal microscope. We used a Hamamatsu Orca-ER cooled 
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CCD camera, and either a 10x 0.5NA objective or a 40x 1.15NA Plan Apo long working distance 
water-immersion objective (Nikon). 

Transmission optical images, including Figure 3-1F and images used for analysis in Figure 9-6B, 
were taken on a Nikon TI microscope with Koehler illumination, using an Orca Flash 4.2 camera 
set to 16 bit gain 1/4, a 0.5NA condenser, and a Nikon Plan Fluor 20x objective. 

Images for Figure 9-1 and Figure 9-7 were taken on a Nikon TI widefield microscope, using an 
Orca Flash 4.2 camera and a variety of objectives. 

Scanning electron microscope images of the AuNP patterns (Figure 3-2F-H) were taken using a 
FE-SEM (UltraPlus, Zeiss) with an Energy selective Backscatter (EsB) detector. Images from 
Figure 3-1H, Figure 3-3B,C, and Figure 3-4A,B were taken using the same FE-SEM (UltraPlus, 
Zeiss) with the SE2 detector. The atomic force microscopy (AFM) of the gel surface in Fig. S3B 
was taken with tapping mode in air (Cypher ES, Asylum Research) with a silicon probe 
(AC240TS, Olympus). Images for Figure 3-3A and Figure 3-4C were taken on a Zeiss FE-SEM 
(Supra), with an SE2 detector. 

Analysis: 
Figure 3-1L,M: Data for the lateral shrink measurements in Figure 3-1L,M was obtained by 
comparing the feature sizes of patterns as specified on the patterning microscope to the size of 
patterns after shrinking and dehydration. Samples were chosen on the basis of the availability of 
high-resolution optical or SEM images of the shrunken state, and came from a variety of different 
experiments. The axial shrink amount for 10x gel was deduced by patterning a cross consisting of 
354µm long lines of 14µm thickness and 300µm depth. The height of the shrunken pattern was 
then measured on a confocal microscope and compared with the patterning dimensions to 
determine the amount of shrink in the axial dimension. 

The calculation of estimated binding sites patterned using our process was done using data from 
Figure 9-2A as follows. The concentration of 5-aminomethyl fluorescein used to incubate the gels 
is known to be 500µM. We measured the fluorescence both inside and outside and used this ratio 
to deduce that the internal concentration is 300µM. Then using what was known to be the 
brightest pattern in Fig. S2A and S2B we calculated based on the difference in fluorescence in the 
pattern from the background that the concentration must be greater than 79.2µM. We say greater 
than because the patterning process bleaches an unknown fraction of the fluorescein molecules. 
Thus, any measurement we make is likely lower than the actual values for sites patterned. To 
calculate the final concentration of 277.2mM after shrinking we simply multiplied by the 
volumetric shrink factor demonstrated in Figure 3-1L. 

Figure 3-2D: Isotropy was measured for samples into which circles had been patterned. Yellow and 
blue bars:  bar graphs of the lateral isotropy of shrink for six 10x gels, and four 20x gels. Lateral 
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isotropy was defined as the ratio of the longest axis of patterned circles (C, inset) to the shortest 
axis, in the shrunken and dehydrated state. The isotropy was measured by visually determining 
the longest axis of the circle, and comparing the diameter on that axis to the diameter on the 
orthogonal axis. A mixture of gels patterned with aminomethyl fluorescein and fluorescein-
cysteamine were used. Gels were chosen for inclusion in the dataset on the basis of the availability 
of images for analysis, prior to measuring the isotropy. No gels were excluded. Dots are 
measurements for individual circles within a single gel; bars indicate mean + standard deviation 
across individual circles within a single gel. Bars are rank ordered from left to right by degree of 
anisotropy, for each shrink factor. Red bar: The axial isotropy for six 10x gels is shown in red. For 
axial isotropy, we a produced a pattern with a “+” cross-section extending 300µm axially. 
Analogously to the lateral isotropy measurements, then, the axial isotropy for a given pattern was 
then defined as max(S/S’, S’/S), where S is the ratio of the axial to lateral shrink factors, and S’ 
is the ratio of the mean axial to mean lateral shrink factors. For the axial isotropy data, dots 
represent single measurements made on six different gels, and bar indicate mean + standard 
deviation across gels.  

Figure 3-2G,H: The widths of lines visualized with SEM were measured by using ImageJ to rotate 
the image so that the lines were oriented vertically, and then taking the mean pixel value over the 
vertical dimension for a clean segment of line. The average was performed over the longest clean 
segment of line available in the image, usually several hundred pixels. The full width at half 
maximum (FWHM) was then measured in pixels, and converted into a distance using the scale 
bar provided by the SEM imaging software. The baseline used in the FWHM measurement was 
found by linear interpolation between the baseline levels immediately on either side of the line 
profile (Figure 3-2G). A vertical line was drawn between the highest point in the profile and the 
interpolated baseline, and the midpoint of this line was chosen as the half-maximum. Lines were 
excluded from our analysis when the magnitude of the background (for example due to charging) 
prevented a determination of the FWHM. In addition, a subset of the lines in the resolution 
pattern were excluded in every gel due to a consistent and reproducible error in the Zen software 
that caused an extra line to be patterned directly below those lines, leading to a larger FWHM. 
We reasoned that these lines could be excluded, because they represent a limitation of the 
software rather than a limitation of the patterning and shrinking process. 

Figure 3-3D,E, Figure 9-6A: For all conductive samples, conductivity was measured using a four-
point probe setup with a semiconductor parameter analyzer. The parameter analyzer was set to 
measure the voltage and current at an electrode (V1, I1) placed on one side of the sample, and to 
measure the voltage at two other electrodes, one (V2) placed adjacent to the first electrode, and 
the other (V3) placed adjacent to a ground electrode. Voltage measurements were performed for 
many different values of V1, typically spanning a range between 1mV and 100mV. The 
measurements were occasionally noisy due to poor vibrational isolation. For this reason, in all 
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cases, we calculated the conductivity as follows. The total resistance Rtot was determined by 
linear regression of V1 against I1. In addition, we regressed V3 against V1 to obtain R0/Rtot, and 
V2 against V1 to obtain (R0 + Rsample)/Rtot, where Rsample is the resistance of the sample, 
and R0 is the contact resistance at the ground electrode. We then obtained the resistance Rsample 
algebraically. For samples on which the measurements were clean, the values of Rsample 
calculated in this way aligned closely to the values obtained simply by regressing V4-V2 against 
I1. However, we found that our method was also capable of calculating the resistance in the 
presence of significant vibrations. 

Figure 9-6B: We measured the opacity of silverized patterns in the expanded state following silver 
intensification using a transmission light microscope with Koehler illumination. Intensified silver 
patterns appeared dark on the transmission microscope due to absorption by the silver patterns. 
We calculated the opacity by measuring the average intensity O outside the pattern and the 
average intensity I inside the pattern, and then defined the opacity as 1 – I/O, where I is the light 
intensity passing through the metallized region and O is the light passing outside the metallized 
region. 

Multimaterial Patterning: 
For multimaterial patterning as in Figure 3-1J and Figure 9-3 the patterning solution consisted of 
333µM biotin-4-fluorescein (Biotium Cat. 90062) and 1.25mM rubidium hydroxide (Sigma, 
402393-25G). The solution was washed into a fully expanded 10x gel for 30min prior to each 
round of patterning. 

To pattern the gel with biotin-4-fluorescein we used 255mW laser power, with a 40x 1.1NA 
objective, and 1x line scanning. Patterns were generated as Z stacks with 2μm step size beginning 
below the surface of the gel and extending 100μm into the gel. Gels were then washed four times 
in water for 20 minutes each time following patterning to remove excess patterning solution. 
Then, gels were washed once in 1x PBS for 20 minutes, after which Alexa 488-labeled streptavidin 
(for Figure 9-3) (Thermofisher, S11223), was diluted to a concentration of 33µg/ml in 1xPBS, 
added to the gel and left to stain for 12 hours; or fluoronanogold (for Figure 3-1J) was diluted into 
PBS, added to the gel and left to stain for 12 hours. The gel was then washed in 0.1x PBS three 
times for two hours each time and then twice in water for 20 minutes, to remove excess 
streptavidin conjugates. 

Subsequently, the gels were immersed again in the biotin-4-fluorescein solution, and patterned for 
a second time as above. Excess fluorescein was removed by washing and streptavidin conjugation 
proceeded identically to the first round. For Figure 3-1J, the second round of deposition used 
33µg/ml Qdot655 Streptavidin (Thermofisher, Q10151MP), while for Figure 9-3 the second round 
of patterning used Atto 647N-labeled streptavidin (Sigma, 94149-1mg). After washout the gels for 
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both Figure 3-1J and Figure 9-3 were shrunken but not dehydrated in 1xPBS by washing once for 
30min before imaging with a Zeiss LSM710 and a 40x 1.1NA objective. 

 

In a multimaterial experiment of this type, some reagent from the second round of staining may 
be deposited on reactive groups patterned during the first round of patterning. To determine the 
magnitude of this “cross-talk,” we relied on the data collected in Figure 9-3A. The magnitude of 
the background-subtracted Atto 647N fluorescence signal at the first patterning location was 
found to be 18.5% of the magnitude at the second patterning location. Because some of that signal 
may be due to spectral overlap of the B4F or Alexa 488 fluorophores with the Atto 647N 
fluorophore, this places an upper bound on the amount of cross-talk associated with this 
multimaterial protocol at 18.5%. A similar measurement in which the two regions were 
overlapping (Figure 9-3B) yielded 21% cross-talk. 

 

Rehydration and hybridization to DNA gels: 
For the experiment in Figure 9-1D, samples were treated identically to those in Figure 9-3, up 
through the Alexa 488-streptavidin stain. Subsequently, gels were washed in 1x PBS and 
incubated for 3 hours with biotinylated DNA carrying an Atto 565 dye at 10μg/ml. The sequence 
of the DNA target was GATTATCCGTGACACAGTAGACTA, and the fluorophore was on the 
3’ side. Subsequently, the gel was washed in water three times, for 20 minutes each time. It was 
then placed in 50mM sodium citrate. The gel was then transferred to a solution of 5mM citric 
acid, and washed twice with this solution, for 30 minutes each time. It was then put in 2mM HCl 
and 0.05% tween for 1 hour, rinsed in 2mM HCl without tween, and then dehydrated. The gel was 
then imaged on a widefield epifluorescence microscope with a 20x objective. Imaging confirmed the 
presence of the DNA in the gel at this point. 

The gel was then rehydrated by washing in PBS twice for 30 minutes each time. Subsequently, 
the gel was incubated in a solution of a probe DNA oligo carrying an Atto 647N dye at 10μg/ml. 
The sequence of the probe DNA was CTACTGTGTCACGGATAATT, and the fluorophore was 
on the 5’ side. The gel was then washed twice in PBS for 30 minutes each time, and was then 
imaged. Imaging at this step confirmed that the 647-labeled probe DNA oligo was in the gel at the 
same location as the target. Moreover, we observed a substantial reduction in the fluorescence of 
the 565-labeled target oligo, which we attribute to quenching of the Atto 565 fluorophore by the 
probe DNA oligo, possibly by FRET. 

To confirm that the probe oligo was attached to the target oligo by DNA hybridization, we 
subsequently immersed the gel in 200mM NaOH for 2 hours. We then washed once in PBS and 
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imaged again. We observed a large reduction in signal in the 647 channel, and a recovery of signal 
in the 565 channel, consistent with a loss of the probe DNA oligo. 
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Figures 

 
Figure 9-1: Material conjugations of various kinds, shown after shrink but not dehydration, and imaged 
with epifluorescent microscopy. (A) Image of fluorescein patterned into the gel in a defined, “microarray”-
type pattern. Scale bar on (B). (B) Image of fluorescently labeled streptavidin deposited in the same 
sample. (C) Image of fluorescently labeled DNA deposited in the same sample. Scale bar on (B). (D) To 
test whether DNA and streptavidin survive the HCl shrinking and dehydration protocol, a DNA oligo 
functionalized with biotin and Atto 565 was attached to Alexa 488-labeled streptavidin. Subsequently, the 
gel was shrunken with HCl, dehydrated, and imaged (left panel, showing DNA present in the dehydrated 
state). It was then rehydrated, and a complimentary “probe” oligo labeled with Atto 647N was washed into 
the gel (center). We attributed the decrease in the fluorescence of the Atto 565 signal at this stage to 
quenching of the Atto 565 fluorophore by the probe DNA oligo, possibly by FRET. The gel was 
subsequently washed in 200mM NaOH to denature the hybridized DNA and imaged (right), confirming a 
loss of the 647 signal and a recovery of the 565 signal. 
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Figure 9-2 Sixteen squares were patterned into a single gel, with each square being patterned with a 
different laser power. Gels were imaged immediately after patterning, prior to washing the patterning 
solution out of the gel, and were subsequently functionalized with fluorescent streptavidin. For laser powers 
below a critical threshold, the density of the deposited material is approximately quadratic in the laser 
power used. At higher powers, the density of deposited material shows an inversion and the patterns bulge 
inwards, coinciding with ablation of the gel substrate, although other processes such changes in the 
solubility of the gel or the fluorescein due to laser heating may play a role. (A) The average intensity of 
bound fluorescein at each square is shown as a function of the laser power used in patterning. A quadratic 
fit is shown for powers less than 110mW. A quadratic dependence of the fluorescence of bound fluorescein 
on laser power is expected, because the rate of two-photon excitation depends quadratically on the laser 
intensity. (B) The raw two-photon image of the squares is shown, powers increase from left to right and top 



133 
 

to bottom (see Methods). Note that bulging of the squares while they are in the patterning solution appears 
to correspond to the regime in which the patterned intensity no longer increases with increasing power. Also 
note that the intensity of fluorescein in the patterned region does not decrease with increasing laser power, 
unlike in the case of the deposited material (D). If the inversion phenomenon is due to gel ablation, the lack 
of inversion in the fluorescein signal could be explained by fluorescein partitioning out of the gel, into the 
void left by the ablation. (C) The average intensity of conjugated streptavidin is shown as a function of the 
laser power used in patterning. A quadratic fit is shown for powers less than 110mW. (D) The raw confocal 
image of the squares is shown, powers increase from left to right and top to bottom. Note that contraction 
of the squares following deposition appears to correspond to the inversion region. (E) SEM image of 20x 
shrunken and dehydrated gel, showing ablation of the gel substrate corresponding to a patterned square and 
circle upon the use of excessive laser powers. In the course of developing the current manuscript, we found 
that gel ablation in this way could be used to generate complex three-dimensional structures, but those 
structures would not typically survive the dehydration process. 
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Figure 9-3: (A) Image of fluorescent streptavidin patterned in the second round of a multimaterial 
patterning experiment. Only the fluorescence associated with the second round deposition is shown. The 
square (top right) was patterned in the first round, and the circle (bottom left) was patterned in the second 
round. The intensity of the square pattern is 18.5% of the intensity of the non-overlapping circle pattern, 
indicating that the crosstalk between patterning rounds is at most 18.5%. (B) A similar pattern, showing 
the channels associated with both the first (green) and second (red) patterning rounds at once. In this case, 
the cross-talk was measured to be 21%. 
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Figure 9-4: (A) Photographic images of a gel before (left) and after (right) shrinking and dehydration (20x 
gel). (B) Atomic force microscopy (AFM) smoothness measurement performed on a 10x shrunken and 
dehydrated gel, unpatterned, showing surface smoothness in the nanometer range across length ranges of ~1 
micron. 
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Figure 9-5 (A) Fluorescence image of a rectangular prism, imaged after HCl shrinking but prior to 
dehydration. (B) The same pattern imaged after dehydration, showing additional shrinking in the axial 
dimension, which causes the rectangular prism to become a cube.  
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Figure 9-6: (A) Current-voltage (IV) curve shown for one sintered silver wire, determined by a four-point 
probe measurement as shown in the inset. (B) The conductivity of silver wires (N=18, N=8 sintered with 
20mW laser power; N=10 sintered with 15mW laser power) as a function of the opacity following 
intensification, measured as 1 – I/O, where I is the light intensity passing through the metallized region and 
O is the light passing outside the metallized region. The best fit is shown as a dashed red line, with R2=0.36 
and F=8.99. The linear relationship is significant at the α=0.01 level. 
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Figure 9-7: A large-area pattern of circles shown in the expanded (top) and shrunken but not dehydrated 
(bottom) states. In total, the pattern in the shrunken state covered an area of roughly 1mm2; a subset of the 
total pattern is shown here since the pattern was repetitive.  This sample was shrunken by a linear factor of 
6 in a MgCl2 solution. The differences in brightness observed in the expanded state are due to refraction of 
the excitation light off the edges of the gel, and are not significant. The inhomogeneities in the shrunken 
image are defects that arose during handling. 
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Component Stock Conc. Amount (mL) 
Sodium Acrylate 38% (w/w) 2.25 
Acrylamide 50% (w/w) 0.5 
Bisacrylamide 2% (w/w) 0.375 
NaCl 5M 4 
10x PBS 10x 1 
Water  1.475 
Final  9.6 

Table 9-1 Formulation of the 10x gel mix. To this monomer solution, we would add 200uL of 10% (w/w) 
APS and 200uL of 10% (v/v) TEMED to initiate polymerization, or 2uL of both APS and TEMED into 
96uL of the monomer solution. 
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Component Stock Conc. Amount (mL) 
Sodium Acrylate 38% (w/w) 2.25 
Acrylamide 50% (w/w) 0.5 
Bisacrylamide 2% (w/w) 0.075 
NaCl 5M 4 
10x PBS 10x 1 
Water  0.9 
Final  8.725 

Table 9-2: Formulation of 20x gel monomer solution. To this monomer solution, we would add 182uL of 
10% (w/w) APS and 182uL of 10% TEMED to initiate polymerization, or 2uL of both APS and TEMED 
into 96uL of the monomer solution. Note that this monomer solution was concocted by accident, so the 
volume does not sum to 9.6mL as for the 10x gel mix. 
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Chapter 10   
Supplementary Information to Chapter 4 

Materials and Methods:    

Beads: 
Bead barcodes were synthesized by the ChemGenes Corporation on one of two polystyrene 
supports (Agilent PLRP-S-1000A 10 μm particles or 10 μm custom polystyrene from AMBiotech). 
Oligonucleotide synthesis was performed as described for Drop-seq (25).  Beads were used with 
one of the two following sequences:  

Sequence 1:  
5’- PEG Linker- TTTT-PC-
GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJTCTTCAG
CGTTCCCGAGAJJJJJJJNNNNNNNNT30  

Sequence 2:  

5’- Linker-
TTTTTTTTCTACACGACGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJJJJJJJ
NNNNNNNNT30  

 “PC” designates a photocleavable linker; “J” represents bases generated by split-pool barcoding, 
such that every oligo on a given bead has the same J bases; “N” represents bases generated by 
mixing, so every oligo on a given bead has different N bases; and “T30” represents a sequence of 
30 thymidines.  

Puck Preparation:  
Pucks were prepared in batches of 20 to 30, which were then stored dehydrated at 4C. Glass 
coverslips (Bioptechs, 40-1313-0319) were attached to a miniature centrifuge (USA 
Scientific 2621-0016) using double sided tape. Subsequently, the coverslip was cleaned by 
spraying with 70% ethanol and wiping with lens paper (VWR 52846-007). A spray-on silicone 
(Techspray 2102-12S) formulation was then applied to the coverslip, the cover to 
the minifuge was closed, and the minifuge was turned on for 10 seconds to spin coat the silicone 
onto the glass. The minifuge was then turned off and the cover opened, and liquid tape 
(Performix 24122000) was sprayed onto the coverslip. The minifuge was again closed and turned 
on for 10 seconds. The coverslip was then carefully removed from the minifuge, and a gasket (3 
mm diameter holes from Grace Biolabs, CW-50R-1.0) was placed on top of the coverslip and 
pressed down. Beads were pelleted and washed twice in 500ul ultrapure water (Thermofisher, 
10977015), and resuspended to a final concentration of 100,000 beads/uL. 10 µl of bead solution 
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was pipetted into each position on the gasket. The coverslip-gasket filled with beads centrifuged at 
40C, 850g for at least 30 minutes until the surface was dry.  

  

The gasket was carefully removed from the dried coverslip. Gentle pipetting of water directly onto 
the pelleted beads removed all beads except for those directly in contact with the liquid tape 
layer. The resulting bead monolayer was allowed to dry, generating the final puck. Beads removed 
in this way could be stored at 4C for later use. As much water was removed from the resulting 
pucks as possible, and the pucks were left to dry.  

  

Puck Sequencing:  
Puck sequencing was performed using SOLiD chemistry in a Bioptechs FCS2 flow cell using a 
RP-1 peristaltic pump (Rainin), and a modular valve positioner (Hamilton MVP). Flow rates 
between 1mL/min and 3mL/min were used during sequencing. Imaging was performed using a 
Nikon Eclipse Ti microscope with a Yokogawa CSU-W1 confocal scanner unit and 
an Andor Zyla 4.2 Plus camera. Images were acquired using a Nikon Plan Apo 10x/0.45 
objective. After each ligation, images were acquired in the following channels: 488nm excitation 
with a 525/36 emission filter (MVI, 77074803); 561nm excitation with a 582/15 emission filter 
(MVI, FF01-582/15-25); 561nm excitation with a 624/40 emission filter (MVI, FF01-624/40-25); 
and 647nm excitation with a 705/72 emission filter (MVI, 77074329). The final stitched images 
were 6030 pixels by 6030 pixels.  

  

Sequencing consisted of three steps: (1) primer hybridization; (2) ligation; and (3) stripping. 
During primer hybridization, a primer was flowed into the flow cell at 5 µM concentration in 4x 
SSC for 20 minutes. Subsequently, the flow cell was washed in 3 mL of SOLiD buffer F. 
Following buffer F wash, ligation mix (recipe below) was flowed into the chamber and allowed to 
sit for 20 minutes, before being flowed back into its original reservoir. Ligation mix was reused for 
~10 ligations before being replenished. Following ligation, the flowcell was washed again in buffer 
F. Then, to cleave the fluorophore off the ligated SOLiD oligo, we flowed 1.5 mL of SOLiD buffer 
C into the chamber, followed by 1.5 mL of SOLiD buffer B, and repeated this cleave step once 
again. We then washed the flowcell in buffer F and repeated the ligation step. After the second 
ligation step, 10 mL of 80% formamide in water was flowed into the flowcell and left for 10 
minutes. The flowcell was then washed in instrument buffer, and the process repeated with the 
next primer. 

 
In order to sequence bead barcodes, we performed 2 ligations on each of 10 primers (Table 10-1), 
of which 6 were “constant” bases (i.e., the first ligation on a primer recessed by 2 or more 



147 
 

nucleotides, which only sequence the primer and thus contain no information about the barcode 
sequence). The final bead barcodes were 14 bases long. 

 

Each 3mm puck presented in this manuscript consists of roughly 70,000 beads, with a total cost of 
less than $0.10.  Moreover, roughly 250uL of SOLiD SR-75 sequencing oligo is required to 
sequence a batch of 30 pucks. With other necessary reagents, each 3 mm puck requires roughly 
$10 of SOLiD sequencing reagents. However, each 3mm puck also requires roughly 300 million 
reads, or ~$200-$500 worth of sequencing using the Illumina Novaseq platform. Thus, the 
dominating cost of Slide-seq is the cost of short-read sequencing. 

 
Ligation mix:  

1x T4 DNA Ligase Buffer (Enzymatics)  

6 U/uL T4 DNA Ligase (Rapid) (Enzymatics)  

40x dilution of SOLiD SR-75 sequencing oligo (Life Technologies).  

  

Image Processing and Basecalling:  
All image processing was performed using a custom-built processing suite in Matlab. Briefly, we 
acquired one image per puck after each ligation, and each image contained four color channels. 
First, color channels were co-registered to each other by thresholding the images and maximizing 
the cross-correlation between the thresholded images. Subsequently, for each puck, the images of 
each ligation were registered to the image of the first ligation using a SIFT-RANSAC image 
registration algorithm based on the VLFeat SIFT package in Matlab (330). Registered images 
were then base-called on a pixel-wise basis, as follows. First, the intensities in the Cy3 channel 
were multiplied by a factor of 0.5 and subtracted from the intensities in the TxR channel, which 
accounts for crosstalk between the channels resulting from the excitation of TxR using the 
561nm laser. Furthermore, for even-numbered ligations, the image of the previous ligation was 
multiplied by a factor of 0.4 and then subtracted on a channel-by-channel basis from the image of 
the even ligation. Each pixel was then called by intensity. For pucks made using the 180402 bead 
batch, we further enforced the expected base balance by including an additional step in which the 
intensities of the dimmest channels were progressively increased until each channel accounted for 
between 20% and 30% of the pixels in the center of the image.  

  
Beads were subsequently identified from the base-called images as follows. Each pixel was 
assigned a number, the base 5 representation of which corresponds to the bases that were called at 



148 
 

that pixel on each ligation. Every such number that occurred on at least 50 connected pixels in 
the image was determined to be a bead, represented by the centroid of the connected cluster.  

  
SOLiD barcodes were then mapped to Illumina barcodes using a custom-built Matlab application 
that identifies the pairwise distance between all members of the two sets of barcodes. Pairs 
of SOLiD  and Illumina barcodes were saved for further analysis if: (1) the two barcodes were 
separated by at most two Levenshtein distance units; (2) there were at least 10 transcripts 
identified in Illumina sequencing with that barcode; and (3) the mapping between the barcodes 
was unique, i.e. if there were no other barcodes at equal or lower edit distance to either barcode.  

  

Tissue Handling: 
Fresh frozen tissue was warmed to -20 C in a cryostat (Leica CM3050S) for 20 minutes prior to 
handling. Tissue was then mounted onto a cutting block with OCT and sliced at a 5° cutting 
angle at 10 µm thickness. Pucks were then placed on the cutting stage and tissue was maneuvered 
onto the pucks. The tissue was then melted onto the puck by moving the puck off the stage and 
placing a finger on the bottom side of the glass. The puck was then removed from the cryostat 
and placed into a 1.5 mL eppendorf tube. The sample library was then prepared as below. The 
remaining tissue was re-deposited at -80 C and stored for processing at a later date. 

 

Library preparation: 
RNA Hybridization: 
Pucks in 1.5 mL tubes were immersed in 200 µL of hybridization buffer (6x SSC with 2 U/µL 
Lucigen NxGen RNAse inhibitor) for 15 minutes at room temperature to allow for binding of the 
RNA to the oligos on the beads.  

 

First Strand Synthesis 
Subsequently, first strand synthesis was performed by incubating the pucks in RT solution for 1 
hour at 42 C. 

 

RT solution: 

75 µL H2O 

40 µL Maxima 5x RT Buffer (Thermofisher, EP0751) 

40 µL 20% Ficoll PM-400 (Sigma, F4375-10G) 
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20 µL 10 mM dNTPs (NEB N0477L) 

5 µL RNase Inhibitor (Lucigen 30281) 

10 µL 50 µM Template Switch Oligo (Qiagen #339414YCO0076714) 

10 µL Maxima H- RTase (Thermofisher, EP0751) 

 

Tissue Digestion: 
200 µL of 2x tissue digestion buffer was then added directly to the RT solution and the mixture 
was incubated at 37C for 40 minutes. 

 

2x tissue digestion buffer: 

200 mM Tris-Cl pH 8                                     

400 mM NaCl                                             

4% SDS                                      

10 mM EDTA                                                     

32 U/mL Proteinase K (NEB P8107S) 

 

Library Amplification  
The solution was then pipetted up and down vigorously to remove beads from the surface, and the 
glass substrate was removed from the tube using forceps and discarded. 200 µL of Wash Buffer 
was then added to the 400 µL of tissue clearing and RT solution mix and the tube was then 
centrifuged for 3 minutes at 3000 RCF. The supernatant was then removed, the beads were 
resuspended in 200 µL of Wash Buffer, and were centrifuged again. After repeating this procedure 
an additional 2 times, the beads were moved into a 200 µL PCR strip tube, pelleted in a minifuge, 
and resuspended in 200 µL of water. The beads were then pelleted and resuspended in library 
PCR mix and PCR was performed. 

 
Wash Buffer: 

 10 mM Tris pH 8.0 

1 mM EDTA 

0.01% Tween-20 
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Library PCR mix: 

 23 µL H2O 

25 µL of 2x Kapa Hifi Hotstart ready mix (Kapa Biosystems KK2601) 

1 µL of 100 µM Truseq PCR handle primer (IDT) 

1 µL of 100 µM SMART PCR primer (IDT) 

  

PCR program: 

95 C 3 minutes 

4 cycles of: 

98 C 20 s 

65 C 45 s 

72 C 3 min 

9 cycles of: 

98 C 20 s 

67 C 20 s 

72 C 3 min 

Then: 

72 C 5 min 

4 C forever 

 

PCR cleanup and Nextera Tagmentation 
The PCR product was then purified by adding 30 µL of Ampure XP (Beckman Coulter A63880) 
beads to 50 µL of PCR product. The samples were cleaned according to manufacturer's 
instructions and resuspended into 10 µL of water. 1 µL of the library was quantified on an Agilent 
Bioanalyzer High sensitivity DNA chip (Agilent 5067-4626). Then, 600 pg of PCR product was 
taken from the PCR product and prepared into Illumina sequencing libraries through 
tagmentation with Nextera XT kit (Illumina FC-131-1096). Tagmentation was performed 
according to manufacturer's instructions and the library was amplified with primers Truseq5 and 
N700 series barcoded index primers. The PCR program was as follows: 
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72°C for 3 minutes 

95°C for 30 seconds 

12 cycles of: 

95°C for 10 seconds 

55°C for 30 seconds 

72°C for 30 seconds  

72°C for 5 minutes 

Hold at 10°C 

 
 Samples were cleaned with AMPURE XP (Beckman Coulter A63880) beads in accordance 
with manufacturer’s instructions at a 0.6x bead/sample ratio (30 µL of beads to 50 µL of sample) 
and resuspended in 10uL of water. Library quantification was performed using the Bioanalyzer. 
Finally, the library concentration was normalized to 4nM for sequencing. Samples were sequenced 
on the Illumina NovaSeq S2 flowcell with 12 samples per run (6 samples per lane) with the read 
structure 42 bases Read 1, 8 bases i7 index read, 50 bases Read 2. Each puck received 
approximately 200-400 million reads, corresponding to 3,000-5,000 reads per bead. 

 

Calculation of Bead Packing: 
To estimate the packing fraction of the beads, we imaged 10 pucks with 488 nm light on the same 
microscope mentioned above after deposition onto the surface and prior to in situ sequencing. The 
signal was normalized to background and the image was binarized. The percent packing was 
reported as the fraction of the image occupied by the beads divided by the theoretical packing 
fraction of 0.9069 for dense packing of uniform spheres on a 2D surface. The mean and standard 
deviation of packing are reported in Figure 10-1D. 

 

Clustering Analysis: 
For clustering of the pucks shown in Figure 4-1C,D and Figure 10-2, highly variable genes were 
identified by running FindVariableGenes() in the Seurat package in R, using a y.cutoff of 0.7 in 
liver, 0.6 in kidney and olfactory bulb, and 0.5 in hippocampus and cerebellum. For the 
hippocampus and cerebellum analyses, variable genes identified from the published datasets from 
these tissues were also included. Non-negative matrix factorization was performed using the 
NNLM package in R, on standardized, log-transformed values, with a k of 8 in liver and kidney, 6 
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in olfactory bulb, 13 in cerebellum, and 20 in hippocampus. For each bead, the largest factor 
loading from NMF after L2 normalization was used to assign cluster membership. 

 

Diffusion Analysis and Comparison of smFISH, scRNAseq and Slide-seq: 
An image of Slide-seq bead signal density was generated through plotting the pixel intensity of 
each bead as a linear representation of the number of UMIs captured (180602_17, 180602_20, 
180611_6). Single molecule FISH was performed on the serial section using HCR v3.0 (Molecular 
Technologies) with probes against three strong CA1 markers (Slc17a7, Ociad2, Atp2b1) and co-
stained with DAPI. Images were taken of the tissue sections and profile was taken across a region 
of CA1 for the Slide-seq image, the DAPI image, as well two of the three genes (Slc17a7, Atp2b1) 
used in the FISH data. The full width half maximum (FWHM) of the profile was then calculated 
for 10 such profiles across the CA1 for both Slide-seq and the serial tissue sections in both DAPI 
and FISH (Figure 10-5).  

 
To quantify the efficiency of mRNA capture, we compared the counts of these genes in Slide-seq, 
scRNAseq and smFISH. FISH images were taken using a 40x 1.15 Nikon Plan Apo water 
immersion objective. Two fields of view (FoV, 652 µm  x 652 µm) were imaged across CA1 for 
each of the genes tested (Slc17a7, Ociad2, Atp2b1) for each of the pucks for a total of six regions. 
Transcript counts for smFISH data were obtained by using StarSearch 
(rajlab.seas.upenn.edu/StarSearch/). Slide-seq data from the same FoV on the puck corresponding 
to the serial section was counted for the same marker genes (Slc17a7, Ociad2, Atp2b1). Using the 
DAPI image for each of the FoV in CA1, we estimated the number of cells present in the FoV. 
Finally, a random sample of CA1 neurons from Drop-seq was taken equal to the number of cells 
present in the field of view and the sums for the three genes listed were taken across all single cell 
barcodes. The result of the total counts is shown as a bar plot (Figure 10-4E) highlighting the 
differences in counts between the technologies. 

 
 

Comparison to Bulk sequencing: 
To compare the capture of Slide-seq to bulk RNAseq dat (Figure 10-4C), we used a stranded 
mRNA Truseq kit (Illumina #20020594) to prepare stranded PolyA selection libraries from a 
dissected sagittal mouse hippocampus. The libraries were sequenced and transcripts per million 
(TPM) for each gene were generated using Salmon post alignment with STAR (331). For Slide-seq 
data, average transcripts per million (ATPM) was computed by summing counts for each gene, 
across all beads on a puck, and dividing by the sum of all UMIs on the puck, and dividing by 1 
million (total UMI count/1million). The per-gene distribution for each of these values (bulk TPM 
and Slide-seq ATPM) was plotted and linear regression was performed giving an R = 0.89. 
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Comparison to scRNAseq: 
To compare the capture of Slide-seq to scRNAseq, as in Figure 10-4A,B,D, we extracted cells 
assigned to the CA1 cluster from hippocampal atlas data (24). For five hippocampal pucks 
(180531_13, 180531_17, 180531_22, 180602_20, and 180620_4) we isolated beads in CA1 by 
hand cropping. We then plotted the distributions of the number of transcripts per bead for each of 
the three genes considered (Slc17a7, Atp2b1, and Ociad2), and the total number of transcripts per 
bead, for the atlas (Figure 10-4A) and Slide-seq (Figure 10-4B) data. Figure 10-4D was likewise 
generated by plotting the mean expression per bead in the atlas CA1 data against the mean 
expression per bead in the Slide-seq CA1 region for every gene in both the atlas and Slide-seq 
datasets. Note that for Figure 10-4A,B,D, expression levels for Slide-seq are averaged over the 5 
pucks listed above. 

Calculation of UMI per cell estimates: 
For calculation of the total UMIs captured normalized to total cells in Figure 10-3D and Figure 
10-4F, we used DAPI images of serial stained tissue sections to estimate the total number of cells 
within a puck.  Segmentation was performed in ImageJ by first scaling signal to background and 
binarizing the image followed by applying a 1.5 µm Gaussian Blur and a watershed transform. 
Nuclei were counted only if they had a diameter greater than 2 µm and less than 12 µm. The total 
number of UMIs from the puck was then divided by the number of nuclei obtained to generate the 
statistic total transcripts/total cells. 

 

Cell Type Deconvolution (NMFreg):  
For each bead, the contribution of each cell type to the RNA on that bead was computed using a 
custom method, implemented in Python, termed NMFreg (Non-Negative Matrix Factorization 
Regression).  The method consisted of two main steps: first, single-cell atlas data previously 
annotated with cell type identities (24) was used to derive a basis in reduced gene space (via 
NMF), and second, non-negative least squares (NNLS) regression was used to compute the 
loadings for each bead in that basis.    

 
To perform NMF on the single-cell data, highly variable genes were first selected as in (24), and 
NMF was performed using a specified number of factors (see below). Each factor was then 
assigned to the cell type whose cells from (24) most frequently had their largest loading on that 
factor.  Next, for each Slide-seq bead, we first computed the bead loadings in the basis using 
NNLS.  The resulting matrix of factor loadings (with dimensions of the number of beads by the 
number of factors) was scaled so each factor had unit variance. Finally, the cell type of the bead 
was assigned based on the identity of the maximum factor loading. 
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For the implementation of NMFreg in Figure 4-2B,C, an adult mouse single-cell cerebellum 
dataset (24) was used to define the NMF basis, using a k (factor number) of 25. The published 
cluster identities from this tissue were modified to remove clusters of cells outside of the Slide-seq-
assayed anatomical region (e.g., cells from midbrain not seen on the puck) and to reduce the 
number of subpopulations.  Specifically, all endothelial populations were merged together into one 
population, as were non-Bergmann astrocytes and oligodendrocytes.  Interneurons not annotated 
as unipolar brush or Golgi (clusters 3-1, 3-2, 3-3, and 3-4)—which could not be assigned to a 
specific type in the published dataset—were also grouped together.  Only Slide-seq beads with 
more than 15 unique genes were used in NNLS regression.  For the implementation of NMFreg in 
Figure 2D, an adult hippocampus scRNA-seq dataset (24) was used in NMF setting k to 30 with 5 
variable gene cutoff for bead inclusion.  The first-level published cluster identities were used for 
bead assignment to cell types. 

 
For the implementation of NMFreg in Figure 4-2D, Figure 4-3 and Figure 4-4, the data were 
processed using published cerebellum (Figure 4-3) or hippocampus (24) (Figure 4-2D, Figure 4-4) 
datasets. In Figure 4-2D, Figure 4-3, and Figure 4-4, Slide-seq beads were used for NNLS 
regression if they had at least 5 variable genes. For Figure 4-4, hippocampus cluster 13 was 
interpreted as marking mitosis. 

 

Often, multiple cell types may be present on a bead. Thus, for the purpose of calculating the 
number of cells of each type appearing on the puck, as in Figure 4-2C and Figure 10-7, we 
determined that a cell type was present on a bead if the L2 norm of the vector of factor loadings 
for that cell type was at least half of the L2 norm of the vector of all factor loadings for that bead. 
Figure 10-7 shows the numbers plotted in Figure 4-2C as a function of this cutoff. 

 

Confidence Thresholding:  
The bead factor loadings returned by NMFreg are in general less pure than the factor loadings 
obtained for single-cell sequencing data, possibly reflecting both the sparsity of the Slide-seq data 
and RNA contributions of other adjacent cell types. In Figure 10-8, in order to determine whether 
a given bead could be confidently assigned to its highest contributing cell type, we computed a 
cell-type-specific, single-cell-derived threshold.  The threshold for a given cell type was the 
maximum loading of this cell type among all single cells not assigned to this cell type in single cell 
atlas data.  A bead was said to be confidently assigned if the L2 norm of the vector of factors 
corresponding to that cell type exceeded the threshold. This comparison was made after 
normalizing so that the sum of the L2 norms of the vector of factors for each cell type would be 
equal to 1. 
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For Figure 10-8A-E, we first performed NMFreg using only beads with at least 100 total 
transcripts. This decreases the number of beads called by 72.6% +/- 13.7% (mean+/-std over 7 
cerebellar pucks). Interestingly, there was no relationship between the number of UMIs per bead 
and the confidence score of the bead (Figure 10-8F). Note that for the computation in Figure 
10-8F, NMFreg was performed on all bijectively mapped beads, which must have at least 10 
transcripts.  

The diameter of Slide-seq beads is 10 µm (original feature size). For the analysis in Figure 10-8A-
D, in an attempt to investigate the importance of the size of the features, we generated larger 
beads in silico, selecting artificial feature sizes of 20, 40, and 100 µm.  Aggregate array features 
were performed by taking bead centroid locations obtained through SOLiD sequencing and 
forming a grid of defined size over the locations of the beads and aggregating beads within each 
region of the grid and treating the resulting data as a single bead. 

 

Robustness of NMFreg: 
To evaluate the robustness of the NMFreg cell type assignments, we calculated a consistency 
metric (Figure 10-6B,C) by running NMFreg for 30 values of k (the number of factors) between 18 
and 48, or for 30 different random seeds. For each Slide-seq bead, the consistency was then 
defined as the fraction of NMFreg runs on which the bead was assigned to the most common cell 
type across conditions tested. These results were plotted as a cumulative distribution function of 
the consistency score per bead. 

 

3D volume reconstruction of hippocampus: 
For Figure 4-2D, beads assigned to hippocampus scRNA-seq clusters 4, 5, and 6 (CA fields and 
DG) (24) from serial hippocampal Slide-seq sections were plotted in space. Sequential slices were 
roughly aligned by the density and shape of beads localized to hippocampal morphology. 
Alignments were refined with the ImageJ plugin TurboReg (332). Volumes were reconstructed in 
3D by generating a 3D image stack with a sphere of diameter 12.5 µm with intensity proportional 
to number of UMIs centered on each bead centroid.  

 

Hippocampal Subtype Images: 
Metagenes for Figure 4-2E were identified from cell type specific atlas expression. The metagenes 
are listed in Table 10-2. 

Metagenes were plotted via density plots (see below) on their corresponding Atlas clusters. Beads 
corresponding to hippocampal atlas clusters 4, 5, and 6 (CA1, CA2/3, and DG) were displayed in 
light gray as a counterstain. 
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Density Plots: 
For the density plot images in Figure 4-2E, Figure 4-3 (black backgrounds), Figure 4-4 (black 
backgrounds), Figure 10-9E,F, Figure 10-11A,C,F,G and Figure 10-12, we formed an image as 
follows. Each point P in the 6030 x 6030 images was assigned an intensity equal to the sum of the 
intensities of all beads with centroids lying within 44-pixel square centered on P. For Figure 
4-4B,C, each bead assigned to the indicated NMFreg cluster was assigned a unit intensity, while 
the intensity for each bead in Figure 4-3C,D,F,G was taken as the total number of transcripts 
belonging to genes in the indicated metagene. Finally, the images were passed through Gaussian 
filters with a standard deviation of 12 pixels.  

 For the images with blue backgrounds in Figure 4-4, each bead was represented by a square of 
length 70 pixels on each side, with intensity equal to the total number of transcripts belonging to 
the set of genes indicated in the legend. Overlapping squares summed their intensities in the 
overlap region. For Figure 4-4G-K, all the images within a given panel are normalized to the same 
values (i.e., the same colors represent the same values in all four images).  

 

Significant Gene Calling: 
To determine whether a transcript had a significantly non-random spatial distribution within a 
particular set of beads (for example, within the set of beads called as Purkinje neurons 
by NMFreg), we first calculated the matrix of pairwise Euclidean distances between all beads in 
the set. We then compared the distribution of pairwise distances between the beads expressing at 
least one count of that transcript (Figure 10-10A) to the distribution of pairwise distances 
between an identical number of beads, sampled randomly from all mapped beads within the set 
with probability proportional to the total number of transcripts on the bead (Figure 10-10B). 
(Rigorously, therefore, the spatial significance gene algorithm determines whether the spatial 
distribution of a particular transcript differs significantly from the spatial distribution of all 
transcripts.) Specifically, we generated 1000 such random samples, and for each sample calculated 
the distribution of pairwise distances. We then calculated the average distribution of pairwise 
distances, averaged across all 1000 samples (Figure 10-10B, bottom). Finally, we calculated the L1 
norm between the distribution of pairwise distances for the true sample of beads and the average 
distribution (Figure 10-10C), and the L1 norm between the distribution of pairwise distances for 
each of the 1000 random samples and the average distribution (Figure 10-10D). We defined p to 
be the fraction of random samples having distributions closer to the average distribution (under 
the L1 norm) than the true sample, and considered any genes with values p≤0.005 (Figure 
10-10E). Often, as many as 4000 genes would pass the filters described above, leading to a high 
false-positive rate. For this reason, various methods were used to enrich for true positives 
(described in detail below), for example by using multiple biological replicates, or by identifying 
clusters of correlated genes within the set of spatially significant genes.  
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Genes were identified as spatially non-random using a custom Matlab application (see Figure 
10-10). In regions in which cells are densely packed, one often finds markers from multiple 
different cell types on a single bead. In some instances, when seeking to identify spatially 
patterned genes within a cell type, our algorithm identified markers of cell types in spatial 
proximity. For example, in cerebellum, granule cell markers were sometimes identified as spatially 
non-random within a set of oligodendrocytes due to the proximity of the granular layer and the 
cerebellar white matter. For this reason, genes were identified as candidates for the statistical 
significance analysis within a particular cluster if they had an average expression of at least 0.1 
transcripts per bead within that cluster in the atlas reference dataset, or if the variance within 
that cluster in the atlas reference dataset was at least 0.01 transcripts squared and the ratio of the 
variance to the squared expression was at least 7.5 (an empirically determined value). Moreover, 
candidate genes for the statistical significance analysis were required to have at least one 
transcript on at least 15 beads in Slide-seq.  

   
 

Overlap Analysis: 
To identify genes that are significantly correlated or anticorrelated with other genes, we applied a 
custom Matlab algorithm. For simplicity of description, we consider the case of determining the 
genes that are correlated or anticorrelated with a particular gene, gene A. For each gene in the 
genome, we generated a “true” image in which each bead with at least one transcript of the gene 
was represented by a square of side length 100 pixels (~64 microns). Images were then binarized, 
so overlapping squares did not sum. Then, for each gene, we additionally generated 50 “random” 
images in which the same number of transcripts were redistributed across all beads with 
probability proportional to the number of reads per bead. We then calculated the pixel-wise inner 
product between the image of gene A and the 50 random images every other gene, and calculated 
the mean and standard deviation of the inner products. We then compared the mean and 
standard deviation to the inner products of the image for gene A with the true image of every 
other gene, obtaining a Z score for each gene. All genes with Z scores greater than 3 were deemed 
correlated, while those with Z scores less than 3 were deemed anticorrelated. 

  

Regional Significance Analysis: 
For several of the analyses in Figure 4-3 and Figure 10-11, we used the following procedure to 
determine whether the expression of a gene within a given region of the puck was significantly 
enriched or depleted. We divided Puck 180819_12 into 5 regions (Figure 10-12): a dorsal region, a 
ventral region, a nodulus region, a nodulus-uvula region (consisting of the nodulus and the 
anterior uvula), and a VI-VII region, corresponding to the posterior side of lobule VI and the 
anterior side of lobule VII. The significance of a gene was then determined by a Fisher exact test 
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performed on the contingency matrix [A, N-A; B, M-B], where A is the number of counts of the 
gene in the designated region, B is the number of counts outside of the designated region, N is the 
total number of counts of any gene in the designated region, and M is the total number of counts 
of any gene outside of the designated region. As in the case of the significant gene-calling 
algorithm, this analysis could be performed on a subset of the beads on the puck. This procedure 
provides a list of genes with a significantly different pattern of expression within the designated 
region than outside of the designated region, regardless of whether the expression is elevated or 
depressed. 

In Figure 4-3B, Kctd12 and Car7 did not pass the p-value cutoff, but are displayed as squares to 
demonstrate their location relative to Aldoc. 

 

Identification of spatially variable genes in the cerebellar granular layer: 
We identified Gprin3 by finding all of the genes with significant expression (p<0.001, Fisher exact 
test) in the ventral part of puck 180819_12 compared to the dorsal part of the puck, for which 
more than 80% of the transcripts were in the ventral portion. This yielded three hemoglobin 
genes, Th, Cemip, Gprin3, Mab21l2, and Syndig1l. The three hemoglobin genes and Th were 
discarded because they were not expressed in granule cells.  

 

Identification of Aldoc- and Plcb4-associated genes in the cerebellar Purkinje layer: 
To identify the Aldoc and Plcb4-associated genes, we ran the significant gene calling algorithm on 
14 cerebellar pucks (3 coronal, 11 sagittal), restricted to beads called as cluster 2 (Purkinje cells), 
cluster 7 (Bergmann glia), or the union of cluster 2 and 7 together. In this way, we identified 669 
genes that were significant on at least one of pucks. This method presumably included many false 
positives, due to the high false discovery rate of the spatial significance algorithm. For that 
reason, we came up with the following procedure to restrict the set of spatially significant genes to 
those that correlated more with Aldoc than with Plcb4, or more with Plcb4 than with Aldoc, on 
the grounds that false positives or genes unrelated to the Zebrin staining pattern would not 
correlate more with one than with the other. To identify genes correlating preferentially with 
Aldoc or Plcb4, we used the significance overlap algorithm to identify, for each of the 669 genes, 
the other genes in the set that correlate spatially with that gene on at least one puck. We then 
calculated, for each pair of genes in the set of 669, the magnitude of the intersection of the sets of 
correlating genes. To construct the matrix in Figure 4-3A, we restricted that overlap matrix to the 
set of genes that have a larger intersection with Aldoc by at least 3 genes, or a larger intersection 
with Plcb4 by at least 3 genes.  

 
For the purposes of displaying the matrix thus obtained in Figure 4-3A, we first normalized the 
i,jth entry of the matrix by dividing as follows: 
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We then divided each column of the resulting matrix by the sum of the column. Finally, because 
the resulting matrix was asymmetric, we summed the matrix and its transpose. For purposes of 
display, we then performed Ward clustering in Matlab and ordered them by cluster. 

 

Identification of Hspb1 pattern: 
To generate Figure 4-3B, we included genes if they had significant expression in the nodulus-uvula 
region at p<0.001 (Fisher exact test). We excluded Ttr, which was not expressed in Purkinje cells. 
For purposes of display, Kctd12 and Car7 were added to the graph as squares to help illustrate 
the clustering of Aldoc-like genes and Cck-like genes. 

 

Identification of B3galt5 pattern: 
To generate Figure 10-11E, we included genes if they had significant expression in the nodulus at 
p<0.05 (Fisher exact test) and significant expression in the VI-VII region at p<0.05 (Fisher exact 
test).  

 

Identification of injury-correlated genes: 
To identify all genes that correlated spatially with Hba-a1, Hba-a2, and Hbb-bs, we ran the 
overlap analysis on pucks 180819_1, 180819_2, 180819_3, 180819_4, 180819_13, 180819_14, and 
180728_15. The first four pucks were taken from a single mouse in the coronal orientation, while 
the last three pucks were taken from a second mouse in the sagittal orientation. We considered all 
genes that correlated with at least one of those three genes on at least 2 pucks. The only genes 
identified in this way, besides hemoglobin, were Lars2 (a marker of rRNA, see Identification of 
rRNA below) and Fos. 

 

To identify genes correlating with Vim, Ctsd, or Gfap at the 3-hour timepoint (pucks 180819_16, 
180819_18, 180819_19, and 180821_3) or the 2-week timepoint (pucks 180819_5, 180819_6, 
180819_7, and 180819_8) (Table 10-2), we ran the overlap algorithm. All four pucks for each 
timepoint were taken from a single mouse in the sagittal orientation. The corresponding list in 
Table 10-2 is the set of all genes that correlate with at least one of Vim, Ctsd, or Gfap on at least 
two of the pucks.  

 

Distance Measurements for Injury Site:  
The distance measurements in Figure 4-4D,E were performed by plotting beads in each of cluster 
of interest with radius linearly proportional to the number of transcripts per bead, with one 
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transcript corresponding to a 25 pixel diameter and 500 transcripts corresponding to a 125 pixel 
diameter. Beads with more than 500 transcripts were plotted with a 125 pixel diameter. This was 
done to ensure that beads with more transcripts were weighted more heavily when calculating the 
spatial profile of the cell types. We then drew boxes around the injury and took line profiles (i.e., 
summed along one axis) across the injury site, to generate the profiles in Figure 4-4D,E.  

  

For measurements of the mitosis layer thickness, we took two measurements from one puck 
(Puck_180821_3, both sides of the injury site) and one measurement from a second puck 
(Puck_180819_19, the bottom side of the injury site). For measurements of the astrocyte scar 
thickness and the microglial penetration thickness, we took six measurements: two on each side of 
the scar from each of three pucks (Puck_180819_5, Puck_180819_6, and Puck_180819_7).  

  

For the distance measurements in Figure 4-4K, we plotted grayscale versions of the images in 
Figure 4-4K using the IEG metagene listed in Table 10-2, and took line profiles similar to those 
taken for the measurements in Figure 4-4D,E. We took measurements from each side of the injury 
for puck 180819_7 (Figure 4-4G, bottom). We additionally took measurements from one side of 
the injury on pucks 180819_5 and 180819_6. We only used one side from those pucks on the 
grounds that the injury site was very close to the edge of the puck on one side.  

Two of the three-day injury pucks (180819_16 and 180819_18) were excluded from all distance 
measurements on the grounds that the tissue damage was not readily identifiable on the puck.  

One two-week injury puck (180819_8) was excluded from all distance measurements on the 
grounds that the tissue slice was more lateral than the other tissue slices. It showed neither 
enrichment of the immediate early genes around the injury site, nor a dip in astrocyte density in 
the middle of the scar, leading us to suspect that it was at the edge of the wound.  

  

Identification of rRNA in pucks: 
During analysis of the 2-hour injury pucks, we observed many counts of the Lars2 gene correlating 
with hemoglobins and Fos at the injury site (Figure 10-14). Upon investigation of the Lars2 
gene, we found using RepeatMasker (http://www.repeatmasker.org/) that it has a rRNA-derived 
repeat in its 3’ UTR, leading us to hypothesize that the counts we observed of Lars2 might in fact 
be misaligned rRNA reads (333). Moreover, we found that the spatial distribution of Lars2 counts 
across the puck is highly correlated to the counts of rRNA, supporting this hypothesis. We thus 
used Lars2 as a proxy for rRNA expression in Figure 4-4A. 
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Staining and Validation of the Cortical Injury protocol: 
To validate the cortical injury procedure in Figure 10-13, we stained with (Abcam ab53554) 
against Glial Fibrillary Acidic Protein (Gfap), a marker of activated astrocytes and microglia that 
should be enriched near the site of injury. To further validate our finding of Vim as a gene 
strongly upregulated at the site of injury we also stained with (Abcam ab20346) against Vim 
showing that it is expressed precisely at the injury. Sections were sectioned at 10 m and post 
fixed in 4% PFA for 10 minutes. Post fixation they were washed three times in PBS before being 
co-stained with the antibodies listed above for two hours at 37C. Post primary antibody 
incubation sections were washed three times for five minutes in 10 mL of 1x PBS. Sections were 
then stained with the appropriate secondary antibodies (Abcam ab150135 and ab175700) for one 
hour in 1XPBS. Sections were then washed three times for five minutes in 1X PBS and co-stained 
with DAPI and imaged using a 20x 0.75 Nikon Plan Apo objective.  

Gene Ontology Analysis: 
For Figure 4-4G-J, we first identified (using the tool at http://geneontology.org/) gene ontology 
annotations that were significantly enriched within the set of genes that correlated with the 
injection site only at the 2 week timepoint or only at the 3 day timepoint (see “Identification of 
injury-correlated genes,” above). Each image in Figure 4-4G-J is a heatmap showing the total gene 
counts summed over all genes in each annotation. For each of Figure 4-4G-J, both heatmaps were 
normalized to the maximum value in either the top or bottom heatmap. Thus, the values shown 
for the 2-week and 3-day pucks are on the same scale, and the units are arbitrary. 

The annotation used for Figure 4-4G was “mitotic cell cycle.” Figure 4-4H was “antigen processing 
and presentation via MHC class Ib.” The annotation used for Figure 4-4I was “gliogenesis.” The 
annotation used for Figure 4-4J was “oligodendrocyte development.” 

 

Animal Handling: 
Animals were group housed with a 12-hour light-dark schedule. All procedures involving animals 
at MIT were conducted in accordance with the US National Institutes of Health Guide for the 
Care and Use of Laboratory Animals under protocol number 1115-111-18 and approved by the 
Massachusetts Institute of Technology Committee on Animal Care. All procedures involving 
animals at the Broad Institute were conducted in accordance with the US National Institutes of 
Health Guide for the Care and Use of Laboratory Animals under protocol number 0120-09-16. 

 

Traumatic Brain Injury Model: 
Animals for the TBI model were anesthetized and processed according to a standard intracranial 
injection protocol as a model for injury. Specifically, mice were anesthetized using isofluorane and 
stereotactically restrained. Subsequently, an incision was made in the scalp and a hole was made 
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in the skull using a dental drill. A Hamilton needle (32 gauge, 7803-04) was lowered to 2 mm 
below the surface of the skull, and was then promptly retracted. The wound was closed using 
Vetbond, and the animal was allowed to recover. Mice were treated with Buprenorphine-SR and 
Meloxicam for analgesia. Mice were sacrificed by cardiac perfusion 2 hours, 3 days, or 2 weeks 
following the injury. 

 

Transcardial Perfusion: 
Animals were anesthetized by administration of isoflurane in a gas chamber flowing 3% isoflurane 
for 1 minute. Anesthesia was confirmed by checking for a negative tail pinch response. Animals 
were moved to a dissection tray and anesthesia was prolonged via a nose cone flowing 3% 
isoflurane for the duration of the procedure. Transcardial perfusions were performed with ice cold 
pH 7.4 HEPES buffer containing 110 mM NaCl, 10 mM HEPES, 25 mM glucose, 75 mM sucrose, 
7.5 mM MgCl2, and 2.5 mM KCl to remove blood from brain and other organs sampled. The 
appropriate organs were removed and frozen for 3 minutes in liquid nitrogen vapor and moved to -
80C for long term storage.  
 

Human Sample Information: 
Human cerebellum tissue assayed in Figure 10-3 was obtained from the Sepulveda Research 
Corporation through the NIH NeuroBioBank. The tissue was received without identifiable 
information, and did not meet the definition of human subjects research (project # NHSR-4235). 

Figures 
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Figure 10-1 (A) Top: schematic of the in situ sequencing and base-calling system established for generation 
of barcoded surfaces (“pucks”). Bottom: schema for mapping of Illumina barcodes to SOLiD barcodes.  (B) 
Minimum hamming distance between Illumina colorspace-converted barcodes and barcodes from a puck 
sequenced in situ using SOLiD chemistry (Blue, puck barcodes, Orange, shuffled puck barcodes). (C) 
Structure of the library at each stage of the preparation. (D) Barcode mapping across the puck.  Beads 
colored green have a barcode bijectively matched between Illumina and SOLiD sequencing. Red beads are 
SOLiD-called barcodes not detected by Illumina sequencing. (E) Beanplot shows the packing fraction of the 
beads on the surface, as a fraction of the maximum theoretical density. The average packing fraction is 85%, 
which is 93% of the theoretical maximum. 
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Figure 10-2 Paired tSNE from Slide-seq data for various tissue types: Shown are tSNE embeddings of the 
tissues assayed in Fig 1C. Coloring of clusters is consistent with Fig 1C. Cluster identities were annotated as 
follows:  Cerebellum: (1) Choroid plexus (2) Ependymal (3) cerebellar nucleus neurons (4) Cochlear nucleus 
(5) Oligodendrocyte (6) Purkinje cells (7) Bergmann glia.  Hippocampus: (1) Fibroblast-like (2) ependymal 
(3) choroid (4) habenula (5) oligodendrocyte (6) CA1 neurons (7) dentate gyrusneurons.  Olfactory bulb: (1) 
Glomerular layer (2)  mitral layer (3) external plexiform layer (4) granule cell layer.  Kidney: (1) Collecting 
tube (2) podocytes (3) Distal convoluted tubule (4) Proximal convoluted tubule.  Liver: (1) Pericentral 
lobule layers (2) periportal lobule layers 
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Figure 10-3 (A) Top: DAPI image of 10um section of a human cerebellum (scale bar 2 mm). Bottom: 
Region of the tissue placed onto a puck (white boxed region in top image, scale bar 2 mm). (B) Left: Slide-
seq reconstruction of tissue with each bead colored by a cluster label. Right: NMF clustering of beads 
plotted by tSNE. Cluster identities shown: 4: Oligodendrocytes, 5: Purkinje Neurons, 6: Bergmann Glia, 7: 
Granular Cells, 8: Granular Cells (C) Left: Image in B recolored to highlight the striping pattern of 
Purkinje Neurons and Bergmann Glia. Right: Magnified image highlighting the alternation between beads 
called as Bergmann glia (purple) and Purkinje neurons (green), boxed region on left image. (D) Comparison 
of UMI counts per cell between mouse cerebellum (N = 3, 301±88 UMIs, mean ± std), and human 
cerebellum (N = 2, 115±21 UMIs, mean ± std ). 
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Figure 10-4: (A) Histograms of counts of three CA1 marker genes (left and center) and total counts (right) 
in Drop-seq profiles assigned to a CA1 cell identity using data from Saunders et al. (24) (B) Gene count 
distributions on Slide-seq beads in Fig. 2D (mean number of transcripts, averaged over five pucks from 
Figure 4-2D). (C) Comparison of Slide-seq expression data to bulk RNAseq. X axis represents 
log10(1+TPM) of bulk sagittal hippocampus RNA seq data. Y axis represents log10(1+ATPM) of Slide-seq 
data, see methods (R = 0.89). (D) For ~20,000 genes, the mean counts per cell in CA1-assigned Drop-seq 
beads is plotted against the mean counts per bead in CA1 Slide-seq beads. Note that although the 
scatterplot is displayed in log space, the fit was performed in linear space to estimate the efficiency of Slide-
seq in comparison to Drop-seq. (I.e. we fit the model y~ax+b, rather than y~a x^b as is standard). A fit 
performed on log-adjusted transcript counts yielded an R value of 0.68. The slope of 0.0268 in the linear fit 
suggests that Slide-seq has 2.7% the capture of Drop-seq. (E) Comparison of transcript counts of three 
genes (Atp2b1, Ociad2, Slc17a7) across smFISH, scRNAseq, and Slide-seq across a field of view of CA1 (for 
smFISH and Slide-seq) and for the equivalent number of cells in scRNAseq. (F) Quantification of the 
number of transcripts per cell in Slide-seq data across five different tissues including hippocampus (N = 4, 
427±79, mean ± std), cerebellum (N = 3, 302±88, mean± std), kidney (N = 2, 641±64, mean±std), liver 
(N = 3, 942 ± 255, mean ± std), and olfactory bulb (N = 6, 718±359, mean±std). 



167 
 

 
Figure 10-5: (A) Left: Slide-seq reconstruction of mouse hippocampus, shaded by the number of transcripts 
captured per bead. Middle left: DAPI image of a tissue section adjacent to the Slide-seq puck. Middle right 
and right: Images of smFISH staining for Slc17a7 and Atp2b1 from adjacent section. Box on each image 
represents a region taken for diffusion analysis. (B) Representative plots of the full width at half maximum 
(FWHM) for the samples above. Red dots represent the half-maximum (see Methods). (C) Beanplot of 
independent FWHM measurements of the CA1 for DAPI, Slide-seq and smFISH. Two CA1 markers were 
used for smFISH quantification (Atp2b1 and Slc17a7). Dotted line represents mean. Scale bars: 500µm 
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Figure 10-6: (A) Loadings of individual cell types, defined by scRNA-seq cerebellum (24) on each bead, as 
in Figure 4-2B, but for additional cell types. (B) Cumulative distribution plot showing the consistency in 
the bead identities assigned from NMFreg. The consistency is calculated by running NMFreg for 30 values 
of k (the number of factors) between 18 and 48. For each bead, the consistency is then defined as the 
fraction of NMFreg runs on which the bead was assigned to the modal cell type across all factors tested. 
Data is shown across three different tissue types. (C) As in B, but here the consistency is calculated by 
running NMFreg with 30 different random seeds. 
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Figure 10-7: (A) A plot of the fraction of beads from cerebellar pucks analyzed in Figure 4-2C, with zero 
cell types (blue), one cell type (red), two cell types (yellow), or three cell types (purple) as a function of the 
cutoff C. A cell type is defined to be present on a bead if the L2 norm of the vector of factor loadings 
mapping to that cell type is greater than or equal to C times the L2 norm of the vector of all factor loadings 
for that bead. For Figure 4-2C, a cutoff of 0.5 was used. The plot shows mean across seven cerebellar pucks. 
(B) The mean number of beads representing granule cells (blue), Purkinje cells (red), other inhibitory 
neurons (yellow), and unipolar brush cells (purple) as a function of the cutoff C. The decrease in the 
number of each kind of cell is roughly linear for C>0.7, but is nonlinear for values of C<0.7, for which 
multiplets are possible. 
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Figure 10-8: Analysis of larger feature sizes, aggregated in silico. (A) All beads were aggregated into 20 
µm-diameter features and the resulting features were assigned cell types by NMFreg. Beads are colored 
according to the cluster to which they were assigned. Legend: G=Granule cells, Purk=Purkinje, 
PV+=Parvalbumin-positive interneuron, PV-=Parvalbumin-negative interneuron, Mg=Microglia, 
Olig=Oligodendrocytes, BG=Bergmann Glia, Ast=Astrocytes, CP=Choroid Plexus, End=Endothelium, 
Fib=Fibroblasts. (B) As in (A), but for 100 µm diameter aggregated features. (C) Same as (A), but all 
features that fail to pass the confidence threshold are colored in gray. (D) As in (C), but for 100 µm 
features. Upon aggregating features into 100 µm diameter features, we retain the ability to identify choroid 
plexus, white matter, and granule cells, but no other cell types with confidence. (E) The distributions of L1 
norms between the factor loading distributions and the uniform distribution are shown for atlas cells, the 
original Slide-Seq data (10 µm), 20 µm aggregated features, 40 µm aggregated features, and 100 µm 
aggregated features, showing the decrease in cell type purity as the feature size increases. (F) The number 
of UMIs (natural log) versus the confidence, defined as the L2 norm of the vector of factors mapping to the 
cell type as which the bead was called, after normalizing so that the sum of the L2 norms for all cell types is 
1. There is no relationship between the number of UMIs and the bead confidence. 
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Figure 10-9: (A) The number of raw reads, high-quality reads, and exonic reads per puck for 10 randomly 
selected pucks from the 66 hippocampal pucks in Figure 4-2D. (B) The total number of transcripts per puck 
for the 66 hippocampal pucks in Figure 4-2D. (C) For the 66 hippocampal pucks in Fig. 2D, from left to 
right, all reported on a per puck basis: the number of beads identified by SOLiD basecalling; the number of 
SOLiD bead barcodes mapped to Illumina bead barcodes (see “Image Processing and Basecalling”, above); 
the number of bijectively mapped barcodes that were processed by NMFreg (i.e., that had at least 5 
variable genes); the total number of cell types passing the 0.5 L2 norm cutoff following NMFreg (Figure 
10-7); the number of beads with a single cell type passing the 0.5 L2 norm cutoff. (D) A probability density 
plot (i.e. normalized histogram) of the number of transcripts per bead, averaged over all 66 pucks. All error 
bars show standard deviation. (E) Cell type calls of three representative sections from the dataset with the 
position on the mediolateral axis denoted at the bottom of the image. (F) Metagene profiles on a sagittal 
hippocampus section representing cell subtypes.  
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Figure 10-10 : Schematic of the algorithm for identifying spatially non-random genes. The algorithm can be 
run on any specified subset of beads to identify genes with significant nonrandom distribution within that 
subset. All histograms displayed here are calculated beads defined as granule cells on a coronal cerebellar 
puck (Figure 4-3A). (A) For each gene of interest, we calculate the distribution of the Euclidean distances 
between all beads in the specified subset expressing at least one transcript of the gene, shown here for 
Rasgrf1. (B) We then randomly sample an equivalent number of beads from the subset with probability 
proportional to the number of reads per bead, without replacement. We perform this sampling 1000 times, 
and for each sample, calculate the distribution of pairwise Euclidean distances between the beads thus 
chosen. We take the elementwise mean of all 1000 samples to obtain the average distribution of pairwise 
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distances across random samples. (C) We then take the elementwise difference between the distance 
distribution for the gene of interest and the average distribution, (D) as well as between the distance 
distribution for each of the random samples and the average distribution. (E) A histogram of the sum 
absolute values of the distributions shown in in (D), i.e., the L1 norm between distance distributions of the 
random samples and of the average sample. The L1 norm serves as our test statistic: if the gene of interest 
is distributed proportionally to the number of transcripts per bead, the L1 norm will be uniformly 
distributed. For Rasgrf1, the L1 norm of the true distribution is greater than the L1 norms of any of the 
random samples, so p<0.001 (permutation test, see Methods). (Because there are only 1000 samples for 
reasons of computational complexity, the smallest observable p value is p<0.001). 
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Figure 10-11 : (A) A coronal cerebellar puck is shown, with Purkinje-assigned beads in white, choroid-
assigned beads in green, and beads expressing Ogfrl1 in magenta. Red arrow indicates cluster of Ogfrl1-
positive beads. (B) An Allen Atlas (38) in situ hybridization atlas image of Ogfrl1, from a similar brain 
region. Red arrow indicates Ogfrl1 expression in the cochlear nucleus. (C) A sagittal cerebellar puck 
showing counts of Pcp4 (gray), Rasgrf1 (blue), and a metagene consisting of Gprin3, Cemip, Mab21l2, and 
Syndig1l (yellow). (D) Allen atlas images of Rasgrf1 (left) and Gprin3 (right). Arrows indicate point of 
boundary of expression within the granular layer for each gene. (E) As in Figure 4-3B, but for genes with 
significant expression both in the nodulus (p<0.05, Fisher exact test) and the VI/VII boundary (p<0.05, 
Fisher exact test). (F) A Gnai1 metagene in green, and a B3galt5 metagene in magenta. (G) Mybpc1 in 
orange. (H) An Allen atlas image for Mybpc1 (38). All scale bars show 250 µm; Pcp4, a ubiquitous marker 
for Purkinje cells, is in gray in (A), (C), (F), and (G). All metagenes are listed in Table 10-2.  
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Figure 10-12: Regions chosen for analysis in Figure 4-3. Yellow indicates beads included in the region 
designation, while white indicates beads excluded from the region. A metagene consisting of Pcp4 and Pcp2 
is plotted. (A) The dorsal region. (B) The nodulus region. (C) The nodulus-uvula region. (D) The ventral 
region. (E) The VI/VII region. 
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Figure 10-13: (A) Section of sagittal hippocampus at the site of cortical injury 3 days post injury stained 
with DAPI to stain nuclei (blue), Gfap (green), and Vim (magenta) revealing the precise location of the 
injury (white box). (B) Magnified image of boxed region in (A). (Scale bars: 500 m) 
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Figure 10-14:  (A) Plot showing the percentage of reads at each bead mapping to ribosomal RNA, prior to 
alignment, for the 180819_3 puck (same as in Figure 4-4) (B) Plot showing beads expressing hemoglobins. 
All beads expressing at least one transcript of Hba-a1, Hba-a2, Hbb-bs, or Hbb-bt are shown in blue, with 
radius proportional to the total number of hemoglobin transcripts. All other genes are shown in green. (C) 
As in B, but for Lars2 transcripts, which are believed to represent rRNA. (See “Identification of rRNA in 
pucks” in Methods.) (D) Three cerebellar (non-injected) pucks, showing hemoglobin transcripts (left) and 
Lars2 transcripts (right). The correlation between hemoglobin and Lars2 in B and C is in great excess over 
the correlations observed in D. 
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Figure 10-15: Beads expressing Sox4 and Sox10 are shown in blue for four pucks from the 2-week injury 
timepoint. The radius of blue beads is proportional to the total counts of Sox4 and Sox10. The injury site is 
indicated with a red arrow. 

Supplementary Video 1: 
A 3D volume rendering of CA1, CA2/3 and dentate gyrus as shown in Figure 4-2. Scale bars: 500 µm. 
 
Table 10-1: Oligonucleotides used in this study. Note r prior to base indicates RNA. + indicates LNA. 

Name Sequence 

Truseq5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCC
GATCT 

Smart PCR primer AAGCAGTGGTATCAACGCAGAGT 

Truseq_PCR_hand
le 

CTACACGACGCTCTTCCGATCT 

Template Switch 
Oligo (TSO) 

AAGCTGGTATCAACGCAGAGTGAATrG+GrG 
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Truseq /5Phos/AGATCGGAAGAGCGTCGTGTAG 

Truseq -1  /5Phos/GATCGGAAGAGCGTCGTCTAG 

Truseq -2  /5Phos/ATCGGAAGAGCGTCGTGTAG 

TruSeq-3 
 

/5Phos/TCGGAAGAGCGTCGTGTAG 

TruSeq-4 
 

/5Phos/CGGAAGAGCGTCGTGTAG 

UP 
 

/5Phos/TCTCGGGAACGCTGAAGA 

UP-1 
 

/5Phos/CTCGGGAACGCTGAAGA 

UP-2 
 

/5Phos/TCGGGAACGCTGAAGA 

UP-3 
 

/5Phos/CGGGAACGCTGAAGA 

UP-4 
 

/5Phos/GGGAACGCTGAAGA 
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Table 10-2: Gene lists referenced throughout the paper, by figure. All figures without “S” refer to Chapter 
4, whereas all figures with “S” refer to this chapter. 

Fig. S11C  
Genes enriched posterior of the primary fissure in the 
cerebellum 

Gprin3, Cemip, Syndig1l, Mab21l2 

Fig. 2  
Fig. 2E CA3/Hilum (plotted restricted to beads 
assigned by NMFreg to atlas cluster 6) 

Satb1, Scg2, Nap1l5, Fxyd6, C1ql3, Necab, Slc35f1, 
Nrsn1, Calb2 

Fig. 2E CA2 (plotted restricted to beads assigned by 
NMFreg to atlas cluster 6) 

Adcy1, Pcp4, Rgs14 

Fig. 2E Subiculum (plotted on all beads) Rxfp1, Fn1, Lxn, Nr4a2 
Fig. 2E CA1 (plotted restricted to beads assigned by 
NMFreg to atlas cluster 5) 

Tenm3, Lypd1 

Fig. 2E DG (plotted restricted to beads assigned by 
NMFreg to atlas cluster 4) 

Mef2c 

Fig. 2E Neurogenesis All beads assigned to atlas cluster 13. 
Fig. 3  
Fig. 3C Aldoc metagene Aldoc, Kctd12, and Car7 
Fig. 3C Cck metagene Cck, Stmn4, Kcng4, and Atp6ap1l 
Fig. 3D H2-D1 metagene H2-D1, Cops7a, and Kmt2c 
Fig. 3D Hspb1 metagene Prkci and Hspb1 
Fig. S11F Gnai1 metagene Gnai1, Nefh, Plcb4, Rgs8, Homer3, Scg2, Scn4b, and 

Gm14033 
Fig. S11F B3Galt5 metagene B3galt5, Gdf10, Tmem248, Mpped2, and Dpf3 
Plcb4-associated ATPases and sodium channels Atp1a3, Atp1b1, Atp2b2, Atp6ap1l, Kcnab1, Kcnc3, 

Kcng4, Kcnma1. 
 
Note that Kcng4 is associated with increased firing rate 
in fast motor neurons (334), suggesting that its 
expression contributes to the faster spiking measured in 
Zebrin II-negative Purkinje neurons (164, 335), while 
the calcium-dependent channel Kcnma1 is known to 
regulate the timing of dendritic calcium burst spiking 
in Purkinje cells (336), suggesting that it contributes to 
differences in bursting activity previously observed 
between lobules III-V and X (337). 

Example genes expressed only in lobule X Prkci, Prkcd, Hpsb1 
Example genes that are expressed everywhere except in 
lobule X 

H2-D1, Cops7a, Kmt2c 

669 Candidate Significant Genes 1110001J03Rik 1700020I14Rik 1810037I17Rik 
2210016L21Rik 2900093K20Rik AW047730 Abr 
Acin1 Actb Actr1a Actr3 Actr3b Acyp1 Adam11 
Adam23 Add3 Aig1 Akap6 Akap9 Aldh5a1 Aldoc 
Alkbh7 Ank2 Ankrd12 Anks1b Ap1s1 Ap2a2 Aplp1 
Apod Apoe App Appbp2 Ar Araf Arap2 Arfip2 
Arhgap20 Arhgap5 Arl2 Arl4a Arpc4 Ascc1 Atp1a2 
Atp1a3 Atp1b1 Atp1b2 Atp2b1 Atp2b2 Atp5c1 Atp5d 
Atp5h Atp5l Atp5o Atp6ap1l Atpif1 Atxn2 Atxn7l3b 
B230118H07Rik B2m Bag1 Baiap2 Bex2 Bhlhe41 
Bloc1s6 Bola3 Brd7 Brd8 Brwd1 Bst2 Btbd17 Bzw1 
Bzw2 Cacng2 Calb1 Calm2 Camk4 Capza2 Car2 Car7 
Car8 Cbr1 Cbx6 Ccar1 Ccdc115 Ccdc50 Ccdc85b 
Ccdc88a Cck Cct6a Cd47 Cd63 Cd81 Cdc37l1 
Cdc42ep4 Cdk5 Cdkal1 Cds2 Celf4 Cep126 Cept1 
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Cerk Cers4 Cggbp1 Chd9 Chga Chn1 Cisd3 Cit Ckap5 
Clasp2 Cmtm5 Cnbp Cnot6l Cnp Col18a1 Commd7 
Comt Copa Cops3 Cops4 Cops7a Cox14 Cox7a2l 
Cox8a Cpne2 Cpne9 Cr1l Creg1 Cript Cryab Csnk2a1 
Cspg5 Cst3 Ctr9 Cttn Cttnbp2 Cux2 Cystm1 Cyth3 
D10Jhu81e Dab1 Dagla Dap Dars Dbi Dclk1 Dcun1d5 
Ddx1 Ddx42 Dgcr6 Dgkz Dnaja1 Dnajb2 Dner Dpm3 
Dpp10 Dpysl2 Dstn Dtna Dync2li1 Ebf1 Echs1 Eci2 
Ednrb Eif1ax Eif3a Eif3d Eif3f Eif4a1 Elmod1 
Epb4.1l1 Epc1 Epha5 Ergic2 Erh Ermn Erp29 Etfa Evl 
Fabp3 Fabp5 Fabp7 Fam107a Fam174a Fam21 
Fam98b Fbxl15 Fbxo3 Fbxo9 Fdps Fdx1 Fem1c Fgfr3 
Fkbp1a Fkbp3 Fkbp8 Fth1 Fxyd7 Gabra1 Galnt11 
Garnl3 Gas5 Gatm Gcsh Ggt7 Glul Gm14033 
Gm27199 Gm5083 Gna13 Gnai1 Gnao1 Gnb2 Gng13 
Gnl3l Golga4 Golph3 Got1 Gpatch11 Gpbp1 Gpm6b 
Gpr37l1 Gria1 Gria2 Gria4 Grid2 Grik1 Gsk3b Gstm1 
Gtf2b Gtf2i Gucy1b3 Guk1 H2-D1 Hccs Hcfc1r1 Hdgf 
Hdlbp Hexa Hgsnat Higd2a Hint1 Hlf Hnrnpc Homer3 
Hopx Hpcal1 Hprt Hsbp1 Hsd17b12 Hsf1 Hspa12a 
Hspa14 Hspa4l Hspe1 Hsph1 Hypk Icmt Id4 Ide Ifi27 
Ifit3 Ifit3b Ifitm3 Ift57 Ilf2 Iltifb Ina Inpp5a Isca1 
Itm2b Itm2c Itpr1 Jkamp Jrkl Kat6a Kcnab1 Kcnc1 
Kcnc3 Kcnd2 Kcng4 Kcnma1 Kcnmb4 Kctd12 Khsrp 
Kif21a Kif3c Kif5c Kitl Klc1 Klhdc2 Kmt2c Krt25 
Lamtor5 Lap3 Lars2 Ldha Lgals3bp Lhx1 Lhx1os 
Lin7a Lpcat4 Lpgat1 Lrrc49 Lsamp Luc7l3 Luzp2 
Lztfl1 Macf1 Macrod1 Magoh Malat1 Map1a Map2k1 
Map3k12 Mapk8ip2 Mapre2 Mapt March6 Mbnl2 
Mbp Med8 Mef2a Meg3 Megf9 Mgst3 Mif Mipep 
Mir6236 Mkrn1 Mlec Mllt6 Mobp Morf4l2 Morn2 
Mplkip Mrpl16 Mrpl35 Mrpl45 Mrps2 Mrps31 Msi1 
Msi2 Msl3 Mt1 Mt2 Mt3 Mtdh Mtfmt Mtss1 Myo5a 
N6amt2 Nae1 Napg Nat8l Ncoa7 Ncor2 Ndufa11 
Ndufa13 Ndufa2 Ndufa3 Ndufa4 Ndufa9 Ndufb2 
Ndufb3 Ndufb4 Ndufb5 Ndufb8 Ndufb9 Ndufc1 
Ndufc2 Ndufv1 Nefh Nefl Nefm Nnat Nomo1 Nop10 
Npas3 Npc2 Npepps Nptx1 Npy Nr2c2 Nrsn1 Nrxn1 
Nrxn2 Nsg1 Nt5c Ntrk2 Ntsr2 Nucks1 Oaz1 Oaz2 
Ogfrl1 Olfm1 Omg Opa1 Opcml Opn3 Osbpl6 Ostc 
Pabpc1 Paip1 Pak1 Park7 Patz1 Pax6 Pbrm1 Pbx1 
Pcdh17 Pcmt1 Pcp2 Pcp4 Pdcl Pde5a Pdhb Pdia3 
Pdlim2 Pex13 Phip Pi4k2a Picalm Pigk Pigs Pisd 
Pitpnc1 Pja2 Plcb4 Plekhb1 Plekhb2 Plekhd1 Plp1 Pltp 
Pmm1 Pnn Pno1 Polb Polr2b Ppa1 Ppm1l Ppp1r11 
Ppp1r12b Ppp1r17 Ppp2r2b Prdx1 Prdx3 Prdx5 Prdx6 
Prex1 Prex2 Prkcd Prkcg Prkg1 Prkrir Prpf6 Psd2 
Psma2 Psma3 Psmb10 Psmd8 Ptgds Ptpmt1 Ptpn11 
Ptpn4 Ptprr Puf60 Pura Purb Pvalb Pxmp2 Qdpr Qk 
Rab24 Rabep1 Rabgap1l Rad23a Rad23b Ramp1 Ran 
Rasa2 Rasa3 Rbm5 Reep1 Rftn2 Rgs7bp Rgs8 Rims4 
Riok2 Rit2 Rn18s-rs5 Rnf13 Rnf167 Rora Rpl14 
Rpl18 Rpl34 Rpl38 Rpl41 Rps15a Rps21 Rps28 Rragc 
Rrp1 Rtfdc1 Rtn4 S100b Sac3d1 Saraf Scaf11 Sccpdh 
Scg2 Scn2a1 Scn4b Sdc3 Sdc4 Sdhc Senp2 Sep15 
Sepp1 Sept11 Sept4 Sept7 Serbp1 Serinc1 Setd7 Sfxn4 
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Sigmar1 Slc13a5 Slc1a2 Slc1a3 Slc1a6 Slc24a2 
Slc25a18 Slc25a39 Slc25a5 Slc33a1 Slc35a5 Slc38a1 
Slc4a3 Slc4a4 Slc5a1 Smarca4 Smarcc1 Smpd1 
Snap25 Snap47 Snapc3 Sncb Snhg11 Snrk Snrpn 
Snx24 Socs7 Sox9 Sparc Sparcl1 Spcs2 Sphkap 
Spock1 Spock2 Spred1 Srp9 Srsf2 Steap2 Stip1 Stk17b 
Stmn1 Stmn2 Stmn3 Stmn4 Strn3 Stt3b Stub1 Suclg1 
Supt6 Sycp1 Syt2 Syt4 Syt7 Tardbp Tbc1d15 Tceb3 
Tcf25 Tex261 Thy1 Thyn1 Timm10b Timm17b Tinf2 
Tiprl Tln1 Tmed3 Tmed7 Tmeff2 Tmem11 Tmem158 
Tmem167 Tmem184c Tmem255a Tmem47 Tmem50a 
Tmem50b Tmem64 Tmf1 Tmsb4x Tnik Tnrc6b 
Tomm22 Tomm40l Tpi1 Trf Trim2 Trp53bp1 Trpc3 
Tsfm Tshz2 Tspan13 Tspyl4 Tst Ttc14 Ttc3 Ttl Ttyh1 
Tuba1a Tubb2a Tubb2b Tubb4a Tubb5 Tulp4 U2af2 
Ubap2l Ubb Ube2q1 Ube3a Ubfd1 Ubl5 Ubl7 Ublcp1 
Uchl3 Ufc1 Upf2 Uqcr11 Uqcrb Uqcrh Usp14 Usp3 
Usp33 Vcpip1 Vimp Vps26b Vps41 Wbp5 Wbscr22 
Wdr33 Wdr7 Wwp1 Xrcc4 Ylpm1 Ywhah Zbtb20 
Zcrb1 Zfc3h1 Zfp512 Zfp608 Zfp87 Zfr Zic1 Zmat2 

Plcb4-Associated Genes Anks1b Atp1a3 Atp1b1 Atp2b2 Atp6ap1l Baiap2 Car8 
Cck Cerk Chn1 Cops7a Garnl3 Gm14033 Gnai1 
Golga4 Gria2 Grid2 H2-D1 Hdlbp Hnrnpc Homer3 
Hpcal1 Hspa12a Icmt Ina Kcnab1 Kcnc3 Kcng4 
Kcnma1 Kitl Kmt2c Lpgat1 Macf1 Mbnl2 Mef2a Msl3 
Ndufb8 Nefh Nefm Nptx1 Pde5a Pja2 Plcb4 Pno1 
Prdx5 Prkrir Qdpr Rabep1 Rgs7bp Rgs8 Riok2 Scg2 
Scn4b Snhg11 Spock2 Stmn2 Stmn4 Strn3 Supt6 Thy1 
Tmem50b Tmem64 Trim2 Tspan13 Ttc3 Vps26b 
Wdr7 Wwp1 Zbtb20 

Aldoc-Associated genes Actb Aldoc Apoe Atp1a2 Atp1b2 Atp5l Atpif1 
B230118H07Rik B2m Car7 Cd63 Cd81 Cdc42ep4 
Cox14 Cpne9 Cst3 Dbi Dpm3 Dtna Ednrb Fam107a 
Fam98b Fth1 Glul Gpm6b Gpr37l1 Gria1 Gstm1 Hint1 
Hopx Kctd12 Kif5c Mt1 Mt2 Mt3 Ndufa3 Ndufb4 
Nomo1 Park7 Pigs Prdx6 Rpl34 Rpl38 Rpl41 S100b 
Sepp1 Sept4 Slc1a3 Sox9 Sparc Sparcl1 Suclg1 
Tmem47 Tmsb4x Trf Tuba1a Zcrb1 

Genes with p<0.001 (Fisher exact test)in the ventral 
part of puck 180819_12 compared to the dorsal part, 
and with greater than 80% of their counts in the ventral 
region. 

Th Cemip Gprin3 Mab21l2 Syndig1l Hbb 

Genes with p<0.001 (Fisher exact test) in the nodulus-
uvula region of puck 180819_12 (i.e. all genes 
appearing in Fig. S3B, except Kctd12 and Car7) 

Aldoc Cacng4 Calm1 Calm2 Car8 Ccdc23 Cck Creg1 
Cst3 Fabp7 Homer3 Hspb1 Idh3b Irs2 Malat1 Ngdn 
Plcb4 Prkcd Prkci Prpf31 Pvalb Rgs8 Slc1a6 Slc25a4 
Sparc Stmn4 Ttr Uchl1 mt-Cytb mt-Rnr1 mt-Rnr2 

Genes with p<0.05 (Fisher exact test) in the nodulus 
and p<0.05 (Fisher exact test) in the VI/VII region of 
puck 180819_12 (i.e., all genes appearing in Fig. 
S11E).  

Actb Aldoc B3galt5 Calm1 Car8 Cck Cdk5rap2 
Chmp4b Cops3 Dbi Dpf3 Efr3a Eif5a Etfa Gad1 
Gdf10 Gnai1 Gstm1 Homer3 Idh3g Itm2c Mpped2 
Mybpc1 Nefh Nsg1 Plcb4 Ppp1r17 Pvalb Rabep1 Rgs8 
Rims2 Rpl13 Sfxn1 Slc1a3 Sox9 Spock2 Timp4 
Tmem248 Ttr Ufc1 Wbp2 Ywhah mt-Cytb mt-Rnr1 
mt-Rnr2 

Fig. 4  
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Genes correlating with Vim, Ctsd, and Gfap at the 3 
day timepoint. 

Camk2n1  Ctsd  H2-T22  Hexb  Lcn2  Lgals1  Mthfd1  
Slc16a11  Pvrl3  Ttr  Ctss  Dbi  Dhrs1  Fabp7  Gfap  
Mgp  Mrps6  Mt2  Nupr1  Pea15a  Pold4  Sdc4  Smc4  
Trim30a  Tspo  Vim  Vip  B2m  C1qc  Fam124a  Fth1  
Gcnt2  Gzf1  Ifi27l2a  Ifitm3  Myo6  Rpl22  Serpina3n  
Tnfaip8  Uimc1  Usp12  Vamp8  Xaf1  Ccdc115  
Igfbp2  Igfbp7  Ubap2  Eif2ak2  2010111I01Rik  
Ccnd1  Cnot6l  Efcab14  Gbp7  Maged2  Med17  
Nfkbia  Pabpc1  Rgs8  Rpl10a  Smc2  Ugt8a  Dclk3  
Rnase4  Wnt7b  Plp1  Trf  Irf9  Rhoc  S100a16  
S100a6  Srgn  Actb  Apod  Arpc1b  Bcas1  Car2  
Cldn11  Cnp  Cplx3  Enpp2  Ermn  Fam46a  Gjc3  
Grb14  Id1  Id3  Ifi27  Ifit1  Ifit3  Igfbp5  Irgm1  Isg15  
Itgam  Itm2b  Lrp4  Lta4h  Mag  Mal  Malat1  Mbp  
Mgst1  Mobp  Mt1  Nipbl  Psmb8  Pvrl1  Rhog  
Siglech  Tppp3  Traf7  Fgfbp3  Creld2  Kcnip2  Msl3l2  
Nfkb1  Nkd1  Stat3  Abca1  Aif1  Apbb1ip  C1qa  
C1qb  Calb1  Clic1  Cpne6  Crip1  Ctsb  Cx3cr1  Cyba  
Dcps  Fcer1g  Ftl1  Fyb  Gm14295  Grn  H2-D1  H2-
K1  Hba-a1  Hba-a2  Hbb-bs  Hbb-bt  Heg1  Hpgd  
Lcorl  Lgals9  Ly86  Mpeg1  Msn  Myl12a  Myo1c  
Ncf1  Nes  Nfe2l2  Nptxr  Pkn1  Plek  Ptbp3  Pycard  
Rn18s-rs5  S100a11  Slc44a2  Sparc  Tle1  Tuba1c  
Tyrobp  Uaca  Vcan  Xpnpep3  Igfn1  Lars2  Pdlim4  
Prdx6  S100a13  Sept11  Sorbs1  Syt17  Tmem176b  
Aco1  Agtrap  Bst2  Cald1  Cd63  Cd81  Chd1l  Ctdspl  
Gbp3  Npas3  Ptpn13  Cd52  Ilk  Pou2f2  Stat1  Ybx1  
Ccnd2  Ctsz  Nek6   

Genes correlating with Vim, Ctsd, and Gfap at the 2 
week timepoint. 

1500015O10Rik  1700017B05Rik  1700047M11Rik  
1810058I24Rik  2610015P09Rik  2810474O19Rik  
3830403N18Rik  4632428N05Rik  A2m  AF251705  
AW112010  Abca9  Abcb1a  Abcd1  Abhd12  Abhd4  
Abi3  Acads  Acer3  Adam10  Adam17  Adamts1  
Adamtsl4  Adap2  Add3  Adgre1  Aebp1  Afap1  Aff1  
Agps  Ahnak  Ahr  Aim2  Akap12  Akap13  Aldh16a1  
Aldh1a1  Aldh2  Anapc7  Ang  Angpt1  Ankrd13a  
Anxa2  Anxa3  Anxa4  Anxa5  Aplp1  Apobec1  
Apobec3  Apoc1  Apoe  Aqp4  Arap1  Arhgap17  
Arhgap29  Arhgap30  Arhgdib  Arrdc4  Arvcf  As3mt  
Ascc2  Aspa  Atf3  Atp1a2  Atp1b3  Atp6v0e  Axl  
Bach1  Bcl2a1b  Bfsp2  Bgn  Bhlhe41  Bin1  Bin2  
Blvrb  Bmp2k  Brd7  Bri3  Btg1  C3ar1  C4b  Calr  
Capg  Capns1  Carf  Carhsp1  Casp8  Cav2  Ccdc13  
Ccdc50  Ccdc74a  Ccl3  Ccl4  Ccl5  Ccl6  Ccl9  
Ccpg1os  Cd14  Cd151  Cd164  Cd180  Cd302  Cd37  
Cd44  Cd48  Cd53  Cd68  Cd74  Cd82  Cd83  Cd84  
Cd86  Cd9  Cdc42ep4  Cdc42se1  Cdkn1c  Cebpa  
Cebpg  Cela1  Cenpb  Cfh  Cflar  Cgnl1  Ch25h  Chd4  
Chst2  Clec5a  Clec7a  Clic4  Clmp  Clu  Cnn3  Cntrl  
Col12a1  Col1a1  Col1a2  Col27a1  Col3a1  Col4a2  
Col5a1  Col6a1  Col9a3  Colec12  Colgalt1  Commd10  
Coro1b  Cotl1  Cpe  Cped1  Cpne3  Cpq  Cpt1a  
Cpxm1  Creg1  Crlf2  Crot  Cryab  Cryba4  Csf1  Csf1r  
Csf2rb  Csrp1  Cst3  Cst7  Cstb  Ctdsp2  Ctnna1  
Ctnnb1  Ctsa  Ctsc  Ctsh  Ctsk  Ctsl  Cttnbp2nl  Cxcl14  
Cxcl16  Cyb5r3  Cybb  Cyfip1  Cyp4f14  Cyth3  Cyth4  
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Dab2  Dcn  Ddah2  Ddr1  Diap2  Dio2  Dnase2a  
Dnm2  Dock1  Dock10  Dpp7  Dtx3l  E130114P18Rik  
Edem1  Edn3  Ednrb  Eef1a1  Eef1d  Eef2  Ehd4  Eif3a  
Elf1  Elk3  Emid1  Eml4  Emp3  Endod1  Entpd1  
Epas1  Epb4.1l2  Erbb2ip  Erp44  Eya3  Ezr  F11r  
Fabp5  Fam107a  Fam114a1  Fam114a2  Fam46c  
Fblim1  Fbln1  Fbn1  Fcgr1  Fcgr2b  Fcgr3  Fcho2  
Fcrls  Fermt3  Fgfr1  Fkbp7  Fli1  Flt1  Fmnl2  Fn1  
Fnbp1  Fnip2  Foxc1  Foxo4  Frmd4a  Fstl1  Fuca1  
Fxyd1  Fxyd5  Gabarap  Galnt10  Gatm  Gbp2  Gcn1l1  
Ghdc  Gjb2  Gltp  Glul  Gm13139  Gm2a  Gm973  
Gna12  Gnai2  Gnb2l1  Gng12  Gng5  Gngt2  Gns  
Golim4  Golm1  Gpm6b  Gpnmb  Gpr183  Gpr34  
Gpr37  Gpt  Gpt2  Gpx1  Gsap  Gsn  Gstm1  Gstp1  
Gucd1  Gusb  Gyg  H2-Aa  H2-Ab1  H2-DMa  H2-Eb1  
H2-T23  H3f3b  Hbegf  Hdlbp  Hes6  Hexa  Hist1h1c  
Hist1h2bc  Hk2  Hmha1  Hmox1  Hpgds  Hrsp12  
Hsd17b11  Hsd3b7  Hsp90b1  Hspb6  Hspb8  Hvcn1  
Ifi30  Ifi35  Ifih1  Ifit2  Ifit3b  Ifitm2  Ifnar1  Ifnar2  
Ifngr1  Igbp1  Igf1  Igf2  Igfbp3  Ikbkb  Il10rb  Il21r  
Il33  Il6st  Inpp5d  Inppl1  Ipo8  Iqce  Iqgap1  Irf8  Islr  
Itga6  Itgav  Itgb1  Itgb3bp  Itgb5  Itih5  Kcnj10  
Kctd12  Kctd5  Kdm5a  Kif5b  Klf2  Klhl36  Klhl5  
Klk6  Krcc1  Lactb  Lactb2  Lair1  Lamb1  Lamb2  
Lamc1  Lamp1  Lamp2  Lap3  Laptm4a  Laptm5  Lat2  
Lats2  Lcp1  Lgals3  Lgals3bp  Lgmn  Lhfpl2  Lilrb4  
Lima1  Limch1  Lipa  Lmo2  Lpar1  Lpcat1  Lpl  
Lrp10  Lsp1  Lsr  Ltbr  Ly6e  Lyn  Lyz2  Maf  Mafb  
Magoh  Magt1  Maml2  Man2b1  Map4k4  Marcks  
Matn4  Mcl1  Mdk  Metap2  Mfap1b  Mlc1  Mmp14  
Mob1a  Mob3b  Mob3c  Mog  Mrpl52  Ms4a6c  Msx1  
Mt3  Mtdh  Myh9  Mylip  Myo18a  Myo1f  Myo9b  
Myoc  Myof  Naglu  Nagpa  Nbl1  Ncf2  Nckap1l  Ncl  
Ndrg1  Neat1  Nek7  Nek9  Nfe2l3  Nfia  Nhlrc3  Npc2  
Npm1  Nrp1  Nrp2  Ntpcr  Oard1  Oat  Olfml1  Olfml3  
Olig1  Opalin  P2rx4  P2ry12  P2ry13  P4hb  Pacsin3  
Padi2  Palld  Parp3  Pbrm1  Pbx3  Pbxip1  Pdcl  Pde3b  
Pdgfra  Pdia3  Pdlim2  Pdlim5  Pdpn  Pex19  Pfn1  
Phkg1  Phldb1  Phldb2  Pla2g15  Pla2g16  Pla2g7  
Pld4  Plekhb1  Plekhf2  Plgrkt  Plin2  Pllp  Plod3  Pltp  
Plvap  Plxdc2  Plxnb2  Pmp22  Ppap2b  Ppfibp2  
Ppp1r14b  Ppp1r18  Prdx1  Prex1  Prex2  Prkcd  Psap  
Psen1  Psme2b  Ptgds  Ptma  Ptn  Ptp4a2  Ptpn1  
Ptpn18  Ptpn6  Ptprb  Ptprc  Ptprz1  Ptrf  Ptrh1  Qdpr  
Qk  Rab3il1  Rac2  Rad9a  Ramp2  Rarres2  Rasgrp3  
Rassf2  Rassf4  Rbms1  Rcan3  Rcn3  Reep3  Rel  
Renbp  Rest  Rgl2  Rgs10  Rgs5  Rhoa  Rhoj  Rhoq  
Rlbp1  Rnaset2a  Rnaset2b  Rnf130  Rnf141  Rnf213  
Rock1  Rpl13a  Rpl18  Rpl18a  Rpl23  Rpl26  Rpl32  
Rpl35a  Rpl37  Rpl37a  Rpl39  Rplp0  Rplp1  Rplp2  
Rps10  Rps11  Rps14  Rps15a  Rps20  Rps24  Rps26  
Rps27l  Rps3  Rps5  Rps9  Rras  Rrbp1  Rtp4  Rufy1  
Runx1  S100a1  S100a10  S100a4  S100b  Sall1  
Samd9l  Samhd1  Samsn1  Sat1  Scamp2  Scara3  
Scarb2  Scd1  Scd2  Scpep1  Scrg1  Sdc3  Selplg  
Sepp1  Sept10  Serinc3  Serpinb9  Serpine2  Serpinf1  
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Serpinh1  Sfrp4  Sgk1  Sgpl1  Sh3bp2  Sh3d19  
Sh3glb1  Sh3pxd2a  Sirpa  Sirt2  Slain2  Slc11a1  
Slc12a2  Slc14a1  Slc15a3  Slc16a1  Slc16a2  Slc1a2  
Slc1a3  Slc25a10  Slc25a15  Slc25a18  Slc26a2  
Slc29a3  Slc38a6  Slc39a1  Slc44a1  Slco2b1  Slfn5  
Smarca5  Smg8  Smim3  Snhg18  Snx18  Snx5  Soat1  
Sowahc  Sox10  Sox12  Sox4  Sp1  Sp100  Sparcl1  
Spata13  Spi1  Spp1  Spsb1  Sspn  St3gal6  Stat2  Stat6  
Stx2  Sulf1  Sult1a1  Susd6  Svil  Tab2  Tagln2  Tap2  
Tapbp  Tcirg1  Tead1  Tec  Tep1  Tgfb1  Tgfb2  Tgfb3  
Tgfbr1  Tgfbr2  Tgif1  Thbd  Thbs2  Thbs4  Timp1  
Timp2  Timp3  Tlr3  Tm4sf1  Tmed10  Tmed3  Tmed5  
Tmem119  Tmem123  Tmem150a  Tmem170b  
Tmem176a  Tmem18  Tmem47  Tmem86a  Tmsb4x  
Tmtc2  Tnfaip8l2  Tnfrsf1a  Tnni1  Toporsos  Tpm2  
Tpm3  Tpm4  Tpp1  Tpr  Trem2  Trex1  Trim12a  
Trim25  Trim56  Trip11  Trp53i13  Tsc22d4  Tspan2  
Tspan4  Ttc28  Ubald2  Ucp2  Unc93b1  Usp25  Ust  
Vamp5  Vasp  Vat1  Vgll4  Vkorc1  Vps54  Vtn  
Wapal  Wasf2  Wfdc17  Wipf1  Wls  Wnk1  Wnt5a  
Wrn  Wsb1  Wwtr1  Xlr  Ybx3  Zbtb20  Zc3hav1  
Zeb2  Zfhx3  Zfp36l1  Zfp703  Zic1  Zmiz1  Znfx1  
Abca1  Actb  Agtrap  Aif1  Apbb1ip  Apod  Arpc1b  
B2m  Bcas1  Bst2  C1qa  C1qb  C1qc  Cald1  Car2  
Ccnd1  Ccnd2  Cd52  Cd63  Cd81  Cldn11  Clic1  Cnp  
Crip1  Ctsb  Ctsd  Ctss  Ctsz  Cx3cr1  Cyba  Dbi  
Dhrs1  Eif2ak2  Enpp2  Ermn  Fabp7  Fam46a  Fcer1g  
Fth1  Ftl1  Fyb  Gbp3  Gcnt2  Gfap  Grb14  Grn  H2-
D1  H2-K1  Hexb  Id1  Id3  Ifi27  Ifi27l2a  Ifit1  Ifit3  
Ifitm3  Igfbp2  Igfbp5  Igfbp7  Itgam  Itm2b  Lcn2  
Lgals1  Lgals9  Ly86  Mag  Mal  Malat1  Mbp  Mgp  
Mgst1  Mobp  Mpeg1  Mrps6  Msn  Mt1  Mt2  Myl12a  
Myo6  Ncf1  Nek6  Nfe2l2  Nfkb1  Nfkbia  Nupr1  
Pabpc1  Pdlim4  Pea15a  Plek  Plp1  Pold4  Pou2f2  
Prdx6  Psmb8  Ptbp3  Pycard  Rhoc  Rhog  Rnase4  
Rpl22  S100a11  S100a13  S100a16  S100a6  Sdc4  
Serpina3n  Siglech  Sparc  Stat1  Stat3  Tmem176b  
Trf  Trim30a  Tspo  Ttr  Tyrobp  Uaca  Vamp8  Vcan  
Vim  Ybx1   

Immediate early genes that were observed to be  
upregulated around the injury site at 3 days and 2 
weeks  

Fos, Arc, Npas4, Junb 

Genes that correlate with Fos, Arc, Npas4, and Junb in 
the overlap analysis at the 2 week timepoint 

Egr1, Egr4, Lmo4, Nr4a1, Slc16a13, Rgs4, Grin2b, 
C1ql3 

Fig. 4K metagene Fos, Arc, Npas4, Junb, Egr1, Egr4, Lmo4, Nr4a1, 
Slc16a13, Rgs4, Grin2b, C1ql3 
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Table 10-3: All figures without “S” refer to Chapter 4, whereas all figures with “S” refer to this chapter.  

Figure Pucks used 
1C 180413_7 (coronal hippocampus) 
1D 180430_1(coronal cerebellum), 180528_23 (kidney), 180803_8 (liver), 

180430_3(coronal olfactory bulb) 
2B 180430_6 (coronal cerebellum) 
2C 180819_9 (sagittal cerebellum), 180819_10 (sagittal cerebellum), 180819_11 

(sagittal cerebellum), 180819_12 (sagittal cerebellum), 180430_1 (coronal 
cerebellum), 180430_5 (coronal cerebellum), 180430_6 (coronal cerebellum) 

2D 180528_20, 180528_22, 180531_13, 180531_16, 180531_17, 180531_18, 
180531_19, 180531_22, 180531_23, 180602_15, 180602_16,  
 180602_17, 180602_18, 180602_20, 180602_21, 180602_22, 180602_23, 
180602_24, 180611_1, 180611_2 (sagittal hippocampus) 

3A sagittal cerebellum: 180819_9, 180819_10, 180819_11, 180819_12, 
180819_24, 180819_26, 180819_30, 180821_8, 180821_9, 180821_12. 
coronal cerebellum: 180430_1, 180430_5, 180430_6 

3B-D 180819_12 (sagittal cerebellum)  
4A 180819_3 (coronal cortex) 
4B 180819_19 (sagittal cortex) 
4C 180819_6 (sagittal cortex) 
4D 180819_19 (sagittal cortex) 
4E 180819_6 (sagittal cortex) 
4F All sagittal cortex: 180819_5, 180819_6, 180819_7 (AS, MP, MM); 

180819_19, 180821_3 (ML) 
4G-J All sagittal cortex: 180819_19 (top), 180819_6 (bottom). See Methods for a 

list of pucks used to determine the list of genes used for GO analysis in Fig. 
4G-J. 

4K All sagittal cortex: 180819_5 (top), 180819_6 (bottom) 
S1D (left) 180413_7 (coronal hippocampus) 

S1D (right) 180819_3, 180819_4, 180819_5, 180819_6, 180819_7, 180819_8, 180819_9, 
180819_10, 180819_11, 180819_12 (NA, beads counted on surface) 

S1E 180611_6 (sagittal hippocampus) 
S2 180430_1 (coronal cerebellum), 180413_7(coronal hippocampus), 180528_23 

(kidney), 180803_8(liver), 180430_3(olfactory bulb) 
S3B,C 180821_27 (coronal human cerebellum) 
S3D 180430_1 (coronal cerebellum),180430_5 (coronal cerebellum), 180430_6 

(coronal cerebellum),180821_27 (human cerebellum coronal), 180821_28 
(human cerebellum coronal) 

S4B 180620_4, 180531_17, 180602_20, 180531_13, 180531_22 (sagittal 
hippocampus) 

S4C 180620_4, 180531_17, 180602_20, 180531_13, 180531_22 (sagittal 
hippocampus) 

S4D 180602_17,180602_20,180611_6 (sagittal hippocampus) 
S5A 180602_20 (sagittal hippocampus)   
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S6A 180430_6 (coronal cerebellum) 
S6B 180430_6 (coronal cerebellum), 180413_7 (coronal hippocampus),180528_23 

(Kidney) 
S7 180819_9 (sagittal cerebellum), 180819_10 (sagittal cerebellum), 180819_11 

(sagittal cerebellum), 180819_12 (sagittal cerebellum), 180430_1 (coronal 
cerebellum), 180430_5 (coronal cerebellum), 180430_6 (coronal cerebellum) 

S8A-D 180430_6 (coronal cerebellum) 
S8E 180430_6 (coronal cerebellum) 
S8F 180430_6 (coronal cerebellum) 
S9A,B 180602_16, 180602_17, 180602_18, 180602_20, 180618_4, 180618_7, 

180618_12, 180618_13, 180618_14, 180618_15 (sagittal hippocampus) 
 

S9C,D 180528_20, 180528_22, 180531_13, 180531_16, 180531_17, 180531_18, 
180531_19, 180531_22, 180531_23, 180602_15, 180602_16,  
 180602_17, 180602_18, 180602_20, 180602_21, 180602_22, 180602_23, 
180602_24, 180611_1, 180611_2, 180611_3, 180611_4, 180611_5, 
180611_6, 180611_7, 180611_8, 180611_9, 180611_10, 180611_11, 
180611_12, 180611_13, 180611_14, 180611_16, 180615_1, 180615_3, 
180615_4, 180615_5, 180615_6, 180615_7, 180615_8, 180615_10, 
180615_11, 180615_12, 180615_14, 180615_16, 180615_17, 180615_18, 
180615_20, 180615_21, 180615_22, 180618_3, 180618_4, 180618_7, 
180618_12, 180618_13, 180618_14, 180618_15, 180618_16, 180618_18, 
180618_20, 180618_21, 180618_24, 180620_1, 180620_3, 180620_4, 
180620_5 
(sagittal hippocampus) 

S10 180430_6 (coronal cerebellum) 
S11A 180430_6 (coronal cerebellum) 
S11C,E-G 180819_12 (sagittal cerebellum) 
S12 180819_12 (sagittal cerebellum) 
S14A-C 180819_3  (coronal hippocampus) 
S14D 180430_1, 180430_5, 180430_6 (sagittal cerebellum)  

S15 180819_5 (top left), 180819_6 (bottom left), 180819_7 (top right), 180819_8 
(bottom right) 
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Chapter 11   
Appendices to Chapter 5 

Appendix A 
Due to stochasticity, noise, and context-dependence (e.g. sequence-dependence) of the NAAB-
amino acid interactions, a measurement performed on the 𝑘th target will yield an approximation 
𝑤 to the reference affinity vector �⃗� . If we assume that the distribution according to which these 
measurements occur is Gaussian, then we can obtain a simple criterion for determining whether 
two N terminal amino acids will be distinguishable on the basis of affinity measurements made 
using a particular set of NAABs. We denote by 𝜎( ) the standard deviation of the measurements 
made with NAAB 𝑖 against amino acid 𝑗. For each amino acid, we may define a sphere of radius 
𝜌 , centered on the vector �⃗� , which surrounds that amino acid in affinity space. Here, 

 𝝆𝒋 = 𝟑 𝐦𝐚𝐱
𝒊

𝝈𝒋
(𝒊)

𝑲𝒋
(𝒊)

 (33) 

where 𝐾( ) is the dissociation constant for the binding of the 𝑖th NAAB to the 𝑗th amino acid. 

N-terminal amino acids will be identifiable with 99.9% certainty provided that there is no 
overlap in affinity-space between the 𝑗 spheres of radius 𝜌 . To determine whether there is such an 
overlap, we must consider the distance metric. 

 𝑫 ≡  𝐦𝐢𝐧
𝒊,𝒋 𝒊

�⃗�𝒊 − �⃗�𝒋 

�⃗�𝒊
 (34) 

where the division is applied element-wise. In order to assign affinity measurements to the correct 
reference affinity 99.9% of the time, it is sufficient (but not necessary) to have 

 𝐦𝐚𝐱
𝒊,𝒋 𝒊

(𝝆𝒊 + 𝝆𝒋) ≤ 𝑫 (35) 

Using Eq. (33), it is then sufficient to have 

 𝟔 𝐦𝐚𝐱
𝒊,𝒌 𝒊

𝝈𝒌
(𝒊)

𝑲𝒌
(𝒊)

≤ 𝑫 (36) 

For the specific case of the NAAB affinity matrix, we find that 𝐷 = 3.84. Thus, in order to ensure 
that the amino acids can be correctly identified 99.9% of the time, we must have 

 𝐦𝐚𝐱
𝒊,𝒌 𝒊

𝝈𝒌
(𝒊)

𝑲𝒌
(𝒊)

≤ 𝟎. 𝟔𝟒 (37) 

or, equivalently, the standard deviation of the 𝑘  measurements must be no greater than 64% of 
the mean. 
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Appendix B 
Under the assumption of Poissonian noise, the photon rates in the bound and unbound states are 
given by 

 𝝀𝒇 = 𝑹𝝉𝐨𝐛𝐬𝒏𝐟𝐫𝐞𝐞 (38) 

and 

 𝝀𝒃 = 𝑹𝝉𝐨𝐛𝐬(𝒏𝐟𝐫𝐞𝐞 + 𝟏) (39) 

respectively. In order to be able to distinguish the bound state from the unbound state, it is clear 
that it is sufficient to have 

 𝝀𝒇 + 𝟑 𝝀𝒇 ≤ 𝝀𝒃 − 𝟑 𝝀𝒃 (40) 

 Because 𝜆 > 𝜆 , we may replace the standard deviation 𝜆  on the left-hand side by the 
standard deviation 𝜆 , obtaining 

 𝝀𝒇 ≤ 𝝀𝒃 − 𝟔 𝝀𝒃 (41) 

Hence, 

 𝑹𝝉𝐨𝐛𝐬 ≥ 𝟔 𝑹 𝝉𝐨𝐛𝐬(𝒏𝐟𝐫𝐞𝐞 + 𝟏) (42) 

We find the final requirement: 

 𝒏𝐟𝐫𝐞𝐞 ≤
𝑹 𝝉𝐨𝐛𝐬

𝟑𝟔
− 𝟏 (43) 

Rephrased as a condition on the concentration of the binder, we find 

 𝒄 ≤  

𝑹 𝝉𝐨𝐛𝐬
𝟑𝟔

− 𝟏

𝟏𝟎𝟎𝟎 𝑵𝑨𝑽
 (44) 

or 

 𝑹𝝉𝐨𝐛𝐬 ≥ 𝟑𝟔 (𝟏 + 𝒏𝐟𝐫𝐞𝐞) (45) 

If 𝑛 ≤ 1, then the assumption of Poissonian noise is invalidated because the emission of 
successive photons is not independent (it depends on the presence of fluorophores in the 
observation field). The assumption of Poissonian noise may also be invalidated if the frame rate is 
comparable to the rate at which fluorophores enter and leave the observation field. In either case, 
to correctly simulate the noise, one must draw the number of free binders that enter the 
observation field during a given frame from a Poisson distribution with mean 𝑛 𝜏 /𝜏 , 
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where 𝜏  is the amount of time each binder spends in the observation field on average. The 
average dwell time of free binders in a region of thickness Δ𝑥 may be calculated as 

 𝝉𝐝𝐰𝐞𝐥𝐥 =
(𝚫𝒙)𝟐

𝑫
 (46) 

where 𝐷 is the diffusion constant (204). For a small protein in water, we have 𝐷~10  m s . 
Taking Δ𝑥 = 100 nm, we find that free binders will dwell on average 𝜏 = 100 μs within the 
imaging plane. 

Once the number of binders entering the observation field during the frame has been 
determined, one must draw the length of time 𝑡 that each binder remains in the frame from an 
exponential distribution with mean 𝜏 . Finally, for each binder, one must draw the number of 
photons emitted by that binder from a Poisson distribution with mean 𝑅𝑡. When the number of 
free binders is small, the resulting noise will differ significantly from Poisson noise due to the 
exponential distribution over dwell times. In our simulations, the long tail of the exponential 
distribution tends to significantly increase the difficulty of distinguishing transient binding and 
unbinding events, compared to simple Poisson noise (data not shown). 

Appendix C 
One advantage of occupancy measurements is that if 𝑘  is known, then 𝑘  may be determined 
even in the presence of photobleaching. To do so, we note that 𝑇  and 𝑇  are independent 
variables that depend on 𝑘 , 𝑘 , and 𝑁 . In the above analysis, we assumed that 𝑁  was 
infinite, so that quenching could be neglected. If 𝑁  is finite, however, then the true expressions 
for 𝑇  and 𝑇  are given by 

 𝑻𝒃 =
𝟏

𝒌𝐨𝐟𝐟 + 𝑹/𝑵𝒒
 (47) 

and 

 𝑻𝒊 =
𝟏

𝒌𝐨𝐟𝐟
− 𝑻𝒃

𝐭𝐚𝐫𝐠𝐞𝐭 𝐨𝐜𝐜𝐮𝐩𝐢𝐞𝐝

+
𝟏

𝒌𝐨𝐧𝒄
𝐭𝐚𝐫𝐠𝐞𝐭 𝐮𝐧𝐨𝐜𝐜𝐮𝐩𝐢𝐞𝐝

 (48) 

The first term in Eq. (48) is the average time the target spends occupied by a quenched 
fluorophore, while the second term is the average time the target spends unoccupied between 
unbinding and binding events. Hence, if 𝑘  is known, then 𝑘  and 𝑁  may be determined from 
𝑇  and 𝑇 . 

Appendix D 
In contrast to occupancy measurements, luminosity measurements are sensitive to error in the 
calibration of the measurement apparatus. Calibration error arises from a combination of 
systematic differences in the brightness of the on- and off-states, which may result if different 
NAABs have different numbers of fluorophores on average, and from systematic error in the 
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measurement of the brightnesses of the on- and off-states. Systematic variation in the brightnesses 
of the fluorophores can be overcome by calibrating the device prior to each measurement (as 
discussed below). In general, however, systematic error in the measurement of 𝑆 and 𝑁 
significantly disrupts attempts to determine the absolute value of 𝑘  due to divergences in the 
derivative of 𝑘  as 𝑀 approaches 𝑁. Hence, for weak binders in particular, infinitesimal changes in 
the calibration level can lead to divergent changes in the measured value of 𝑘 . For this reason, if 
the goal of the measurement is to determine the absolute value of 𝑘 , it is essential that the 
concentration be chosen such that the value of 𝑀 to be measured lies close to 𝑆, i.e., such that the 
concentration 𝑐 is close to or greater than 𝑘 . If 𝑘  is large or unknown, however, this 
requirement may not be achievable. 

In our case, however, we are interested not in determining the absolute value of 𝑘 , but rather 
in determining the identity of a target (N-terminal amino acid) from the binding affinities of many 
binders (NAABs). In this case, one may significantly reduce the effects of calibration error by 
using the reference values of 𝑘  to calculate the expected photon rate 𝐸 from the brightnesses of 
the on- and off-states, for each of the possible target identities. After having performed the 
measurement with all 17 binders, one is left with a vector �⃗� of the photon rates measured for 
each binder, and a set of vectors �⃗� , the 𝑘th of which is the vector of photon rates that one would 
have expected to measure if the target were of type 𝑘. The identity of the target is then 
determined by minimizing the norm of �⃗� − �⃗�  over 𝑘. The key difference here is that because one 
compares the expected photon rates to the measured photon rates, one avoids the nonlinearities 
inherent in calculating the measured dissociation constant from the measured photon rate. 

Appendix E 
Figure 11-1 shows the full set of accuracy matrices determined by simulation for 100 random 
affinity matrices. 
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Figure 11-1: Accuracies for amino acid calling obtained for 100 random affinity matrices in 
simulations. 100 random affinity matrices were generated by randomly shuffling the entries of the NAAB 
affinity matrix. For each resulting matrix, we simulated 10000 amino acid calls, with 5% calibration error 
and 0.25% kinetic error. The resulting accuracy matrices are presented here. The scale and axes for each 
matrix are identical to those in Figure 5-4E. 
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Chapter 12   
Supplementary Information to Chapter 6 

Methods: 
Cloning: 
All plasmids were constructed either using restriction cloning using restriction enzymes from New 
England Biosciences and the NEB Quick Ligation kit (M2200L), or using the In-Fusion HD 
cloning enzyme mix (Clontech, 638911). Plasmids were grown in E.Cloni 10G Chemically 
Competent Cells (Lucigen, 60107-1) and were verified by Sanger sequencing (Eton biosciences). 
All plasmids are deposited on Addgene. 

 

Due to high repetition present in the RNA editing templates, inserts for plasmids 76, 147, 148, 
149, and 187 (see Table 12-2) were ordered as sense and antisense ultramer oligonucleotides, which 
were annealed to each other prior to cloning. Plasmid 76 was cloned by inserting RNA templates 
(A_Short, B_Short, C, D, E) into the 3’ UTR of an iRFP transcript expressed under a UbC 
promoter in a second generation lentivirus backbone using SphI and ClaI. Subsequently, this 
plasmid was modified by the addition of a flavivirus xrRNA in the 5’ UTR. Templates A_Short 
and B_Short were then extended by inserting another pair of annealed ultramers on the 5’ side of 
A_Short and B_Short using SphI and MluI. The resulting templates are designated A and B. To 
generate plasmids 147, 148, 149, and 183 (as used in the paper), templates A and B were then 
moved into different backbones and different promoters by restriction cloning, or by Gibson 
assembly with PCR amplification of the repRNA template region. Template A is used throughout 
the paper, and Template B is shown in Figure 12-1 for comparison. 

 
RNA Purification, Library Preparation, and Sequencing 
All cell cultures were lysed with 600uL of buffer RLT Plus from the Qiagen RNEasy Plus Mini 
Kit (Qiagen, 74136), and were pipetted up and down vigorously to homogenize. RNA was then 
purified using the Qiagen RNEasy Plus Mini kit, following the instructions from the manufacturer. 
Subsequently, 11uL of purified RNA was reverse transcribed using Superscript IV (Thermofisher, 
18090050) and a barcoded version of SGR-174 (see Table 12-2), following the protocol from the 
manufacturer. Reverse transcription reactions were then purified using Agencourt Ampure XP 
beads at a 1:1 dilution (Beckman-Coulter, A63881). Some portion of the eluent, typically 25%, 
was then PCRed using P5 and a barcoded version of SGR-176 (see Table 12-2) the Q5 Hot Start 
High Fidelity 2x Master Mix (NEB, M0492L) with the following settings: 30s of 98C denaturation; 
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then 25-30 cycles of 10s denaturation at 98C, 20s annealing at 70C, and then 25s extension at 
72C. Neuron lysates were typically PCRed for 30 cycles, while HEK cell lysates were typically 
PCRed for 25 cycles. PCR reactions were then pooled and run on a gel, and a 400bp band was 
extracted using the NucleoSpin PCR Cleanup Kit (Macherey-Nagel, 740609.250). The 
concentration of DNA in the resulting eluent was determined via a Qubit 2 fluorometer 
(Thermofisher), and was then adjusted to 4nM for sequencing. The read structure is shown in 
Figure 12-6. 

 

Sequencing was performed using NextSeq Mid Output 300 cycle kit (Illumina, FC-404-2004), 
Miseq 300 cycle v2 kits (MS-102-2002), or Miseq 600 cycle v3 kits (MS-102-3003), with at least 
80bp read 1 and 185bp read 2, with 8bp index 1 and 15bp index 2. 

 

HEK and 3T3 cell culture: 
Except in the case of the single cell experiments, HEK293FT and 3T3 cells were plated in 24 well 
plates. Cells were grown in DMEM (Thermofisher, 10566016), supplemented with 
Pennicillin/Streptomycin (Thermofisher, 15140122) and 10% certified Tet-system approved FBS 
(Clontech, 631101). Transfections were performed using the TransIT-X2 system (Mirus, MIR 
6000), following the manufacturer’s instructions. 

For doxycycline experiments, HEK and 3T3 cells in 24 well plates were transfected with 300ng of 
plasmid 147 or 148, 100ng of pCMV Tet3G from the Tet-on 3G system (Clontech, 631168), and 
100ng of plasmids 116v1, 116v5, or 116v6. In the experiments for Figures 1, 2, 3, and S1, they 
were transfected with both 147 and 148, and received 150ng of each plasmid. At least 12 hours 
after transfection, cells were stimulated by adding doxycycline to a final concentration of 1ug/mL, 
followed by gentle mixing or swirling of the plate. Subsequently, transcription was halted by 
adding Actinomycin D to a final concentration of 1ug/mL in the same medium. After waiting for 
the experimental time period, cells were lysed using Buffer RLT Plus and libraries were prepared 
as described above. 

For experiments using the Vivid promoter, 3T3s were transfected with 300ng of plasmid 149, 
100ng of pCMV Tet3G, and 100ng of plasmid 116v5. For conditions in which cells were 
transfected with both plasmid 147 and plasmid 149, they received 150ng of each plasmid. For the 
experiments in Figure 12-3, cells were stimulated with a blue LED (Thor Labs, M455L2) with a 
total power of 200uW/cm2. The LED was turned on for 1 hour, and was subsequently turned off. 
After the LED was turned off, the cells were wrapped in foil to prevent accidental light exposure. 
Cells were then lysed after the experimental time period. 
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HEK Cell Doxycycline Experiment 
For the experiment in Figure 6-1E,F, cells were stimulated as above and were lysed at the 
following timepoints: 0 hours (i.e., immediately before adding dox), 0.5 hours after adding dox, 1 
hour after adding dox (i.e., immediately before adding ActD), 2 hours after adding dox, 3 hours 
after adding dox, 4 hours after adding dox, 5 hours after adding dox, 6 hours after adding dox, 7 
hours after adding dox, 8 hours after adding dox, 9 hours after adding dox, 10 hours after adding 
dox, 11 hours after adding dox, and 12 hours after adding dox. Each timepoint consisted of three 
replicates. On a separate occasion, we collected three replicates at 2.5 hours after adding dox and 
4.5 hours after adding dox, and these timepoints functioned as our test timepoints in Fig. 2D,E. 

 

Vivid Experiments: 
For the experiment in Figure 12-3, we collected three replicates for each of the following 
timepoints: immediately prior to turning on the LED, 1 hour after turning on the LED (i.e., 
immediately prior to turning off the LED), 2 hours after turning on the LED, 3 hours after 
turning on the LED, 4 hours after turning on the LED, and 5 hours after turning on the LED. 

 

Single Cell Experiments: 
For all experiments involving single cells, HEK cell cultures were prepared, transfected with 100ng 
of pAAV-CAG-GFP (Addgene 37825), 200ng of plasmid 147, 100ng of plasmid 116v5, and 100ng 
of pCMV Tet3G, stimulated with doxycycline, and then silenced with actinomycin D as described 
above. Subsequently, at the designated timepoint (e.g., 8 hours or 4 hours after doxycycline was 
added to the culture medium), cells were treated with trypsin (Life Technologies, 25300054). 
Following trypsinization, cells were centrifuged at 850g, washed in cold PBS, and then 
resuspended in cold PBS. 96 well plates were prepared, with each well containing a solution of 
0.2% Triton-X with 2U/uL RNAse inhibitor. Individual cells were sorted into the wells of this 
wellplate using a Moflo Astrios EQ flow cytometer. Following sorting, the wellplate was sealed, 
centrifuged, and then placed at -80C overnight. 

For the analysis in Figure 6-4, cells in condition 2 received plasmid 147B1, while cells in condition 
3 received plasmid 147B3. The two populations of cells were mixed following trypsinization and 
sorted together. By contrast, cells in condition 1 received plasmid 147B1, and were sorted 
separately from the others.  

The single cell analysis was nominally conducted with cells from 4hr and 8hr timepoints. However, 
following trypsinization, cells remained in cold PBS for up to an hour and a half due to latencies 
in the sorting process. For this reason, we compared the estimates from the single cells to the 
estimates for populations of ~100,000 of the same cells (i.e., stored in cold PBS for the same 
amount of time) lysed immediately after sorting. 
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Library preparation for the single cells proceeded as follows. Plates containing single cells were 
thawed, and 7uL of nuclease free water was added to the single cells to bring the total volume up 
to 11uL. Subsequently, reverse transcription was performed using Superscript IV and the SGR-174 
RT primers, as in the case of the bulk samples, with the following modifications. RT primers were 
distributed so that each cell at a given timepoint received an RT primer with a different barcode. 
In addition, for each timepoint, we performed two no-template RT reactions. Finally, after the 
50C step in the Superscript IV protocol, we cooled the samples to 37C and added 20U of 
Exonuclease 1 (NEB, M0293S) to the reaction to remove excess primers. Samples then remained 
at 37C for 10 minutes, before proceeding to the 80C heat inactivation step. Following reverse 
transcription, the RT reactions for all cells and the two no-template controls at a given timepoint 
were pooled, cleaned with Ampure XP beads at a 1:1 dilution, and were then PCRed using the 
same protocol as for the bulk samples. Cells were pooled prior to PCR as a way of reducing the 
number of cycles necessary to achieve amplification. We excluded cells if they received fewer than 
150 reads, or if the most common RNA barcode represented fewer than 80% of the total 
deduplicated reads, which would indicate index swapping between cells. 

 

Neuron Culture Preparation and Transfection: 
All procedures involving animals at MIT were conducted in accordance with the US National 
Institutes of Health Guide for the Care and Use of Laboratory Animals and approved by the 
Massachusetts Institute of Technology Committee on Animal Care. Primary hippocampal neuron 
culture was prepared as previously described. Neuron cultures were transfected at 6-7 DIV using a 
commercial calcium-phosphate kit (Thermofisher, K278001), as previously described. Briefly, 
neurons were transfected with 600ng of pUC19, 200ng of plasmid 116v5, and 200ng of plasmid 
187. Neurons were then incubated with calcium-phosphate precipitates for 30-60 minutes, followed 
by washing with MEM buffer at pH 6.7-6.8 to remove residual precipitates. 

 

Neuron Culture Stimulation: 
Neurons were stimulated at 14-15DIV. Neurons were placed in 1mL of plating medium (500mL 
MEM, 2.5g glucose, 50mg transferrin, 1.1g HEPES, 5mL 200mM L-Glutamine, 12.5mg insulin, 
50mL HI FBS, 10mL B27 supplement). To stimulate the neurons, we added 250uL of 5x 
depolarization medium and agitated gently. Neurons were then left for one hour in an incubator. 
Subsequently, the medium was aspirated and neurons were washed twice in plating medium. They 
were then left in plating medium for a variable amount of time, before being lysed in 600uL of 
buffer RLT Plus. 

 
Plating Medium: 

1. 500mL MEM (Thermofisher, 51200-038) 
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2. 2.5g glucose (Sigma Aldrich, G7528-1KG) 
3. 50mg transferrin (Sigma Aldrich, T1283-500mg) 
4. 1.1g HEPES (Sigma Aldrich, H3375-500G) 
5. 5mL 200mM L-Glutamine (Thermofisher, 25030-081) 
6. 12.5mg insulin (Millipore, 407709) 
7. 50mL HI FBS (VWR, 45000-736) 
8. 10mL B27 Supplement (Thermofisher, 17504-044) 

 
5x Depolarization Medium 

1. 170mM KCl 
2. 10mM HEPES pH 7.4 
3. 1mM MgCl2 
4. 2mM CaCl2 

 

Neuron Inference Experiment: 
Due to the limited availability of neuron culture at any given time, the data for Figure 6-5 was 
conducted in two separate experiments, which can be considered to be biological replicates. We 
collected the following timepoints: prior to stimulation (i.e., immediately before adding 
depolarization medium); 1 hour after stimulation (i.e., immediately before washing the neurons in 
fresh medium); 2 hours after stimulation; 3 hours after stimulation; 3.5 hours after stimulation; 4 
hours after stimulation; 5 hours after stimulation; 5.5 hours after stimulation; 6 hours after 
stimulation; 7 hours after stimulation. 

 

The breakdown of the data in Figure 6-5 by experiment is as follows. In the first experiment, we 
collected two samples prior to stimulation; three samples at 1 hour; three samples at 2 hours; 
three samples at 3 hours; three samples at 4 hours; and two samples at 5 hours. In the second 
experiment, we collected one sample at 2 hours, two samples at 3 hours, three samples at 3.5 
hours, two samples at 4 hours, two samples at 5 hours, three samples at 5.5 hours, two samples at 
6 hours, and two samples at seven hours. 

 

Multiplexing: 
Experiments for Figure 9-4 were conducted as follows. Three wells of 3T3 cells were transfected as 
described above with 100ng each of pCMV Tet3G, plasmid 133, plasmid 147B1, plasmid 149B3, 
and plasmid 116v5. Three wells were transfected with 100ng of pCMV Tet3G, 100ng of plasmid 
116v5, and 100ng of plasmid 147B1, and 200ng of pAAV-CAG-GFP. Finally, three wells were 
transfected with 100ng of plasmid 133, 100ng of plasmid 149B3, 100ng of plasmid 116v5, and 
200ng of pAAV-CAG-GFP. Subsequently, all 9 wells were irradiated with blue light as described 
above for 1 hour, and were the placed in darkness. 7 hours after placing the cells in darkness, cells 
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were stimulated with doxycycline as described above. After one hour in doxycycline, cells were 
lysed. 

 

Alignment and Edit Counting: 
The alignment and analysis pipeline for sequencing data is summarized in Figure 12-6. Analysis of 
sequencing data was performed using custom Matlab code. Briefly, in the case of single cell data, 
we first performed deduplication using a 9bp UMI on the RT primer (oligo SGR-174). Other 
datasets were not deduplicated. Reads were then filtered to ensure that they had the minimum 
necessary read length (67 bases on Read 1, and 184 bases on Read 2). Note that Read 1 was on 
the RT primer, so Read 1 reads the reverse complement of the RNA sequence. Thus, the expected 
mutation was A to G on Read 2, and T to C on Read 1. Alignment was performed using all bases 
that were not As on Read 2, or that were not Ts on Read 1. Reads were considered to be aligned 
to the template if 95% of the non-A (for Read 2) or non-T (for Read 1) bases matched the 
template. Furthermore, we required 90% of the bases that were expected to be As on Read 2 or 
Ts on Read 1 have Q scores greater than 27 (Figure 12-6); reads that failed to achieve this 
threshold were discarded. 

 

Finally, except as stated in Figure 12-2, we required that all reads have at least one edit in Read 1 
and at least one edit in Read 2 for analysis (Figure 12-6D). We implemented this requirement 
because it appeared to eliminate a number of artifacts that we occasionally observed in our data: 
for example, each well would sometimes have different (large) numbers of RNAs with zero edits or 
one edit, which would confound attempts to infer timing from the mean editing rate, as in Figures 
5 and Figure 12-3. As a consequence of this requirement, all of the histograms of edits per RNA 
presented in this paper appear not to show any RNAs with fewer than ~12 edits. There are ~12 
bases in template A, all of which are on Read 2, that are edited much more quickly than any 
bases on Read 1. These are of the form UAG, and all form bulges in the RNA secondary 
structure, which is thought to encourage editing by ADAR. Exclusion of RNAs with zero edits on 
Read 1 or Read 2 limits the analysis to RNAs that are already fully edited at all 12 of those As, 
thus causing all RNAs to have at least 12 edits. 

 

Linear Interpolation: 
In Figure 6-5 and Figure 12-3, the timepoints associated with the c-fos neural activity and with 
the vivid promoter were determined by linear interpolation, as follows. We first calculated the 
mean number of edits per RNA for all replicates, and determined the mean across replicates for 
each timepoint (plotted in Figure 6-5B and Figure 12-3B, designated Mt). Then, to perform the 
estimate, for each replicate R from timepoint t we identified the two timepoints t1 and t2 such 
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that t != t1,t2 and such that the mean mR of replicate R obeyed Mt1 < mR < Mt2. The time 
estimate for replicate R is then determined as 

 

𝑡 =
𝑚 − 𝑀

𝑀 − 𝑀
(𝑡 − 𝑡 ) + 𝑡  

 

Exponential Model: 
The exponential model in Figure 6-2 was implemented using custom code in Python, as follows. 
For each editable position i on the template, we assume the likelihood of base i being edited 
follows an exponential distribution with parameter λi, to be estimated from the data. Assuming an 
instantaneous pulse of transcriptional activity at time t=0, the fraction of edited bases for position 
i, yi, can be modelled as the CDF of the exponential distribution: 

 
𝑦 (𝑡) = 1 − 𝑒  

 
To more accurately capture the experimental setup, we model yi as an underlying process which is 
exponential, but with start time uniformly distributed in [0, tstop], where t=0 represents when 
doxycycline is added to the cells and tstop is the time at which actinomycin D was added to the 
cells. Specifically, we fit a function of the form 

 

𝑦 (𝑡) =

⎩
⎪
⎨

⎪
⎧ 1 −

1 − 𝑒

𝜆 𝑡
    if    𝑡 ≤ 𝑡

1 −
𝑒 − 𝑒  

𝜆 𝑡
    if    𝑡 > 𝑡

 

 
where tstop was 1hr and λi was fit to the data using non-linear least squares. This function was fit 
for times t ≥ 1.5hr, since the editing distributions for earlier timepoints are strongly affected by 
populations of RNA present prior to doxycycline addition (for example, the mean editing rate in 
Fig. 1F decreases from t=0 to t=1). For the analysis in Fig. 3, analysis was then performed using 
only those adenosines for which the R2 of the resulting fit was greater than 0.9. We model the 
total number of edits to the RNA with a Poisson binomial distribution with N trials where N is 
the total number of editable positions and success probabilities given by yi(t) for each position i. 
The probability of having n edits at time t is given by  

 

𝑝(𝑛, 𝑡) = 𝑦 (𝑡)

: 

1 − 𝑦 (𝑡)

: : ( )

 

 



201 
 

Here, A is a binary vector with each entry corresponding to a specific adenosine in the repRNA 
editing region. Ak=1 if adenosine k has been edited to inosine, and sum(A) counts the total 
number of edits in A. Time estimates using the exponential model were then made by minimizing 
the Kullback-Leibler divergence between p(n,t) and the empirical distribution q(n) over t. p(n,t) 
was calculated in practice via a dynamic programming approach. 

 
For Figure 12-2A-C, the exponential model was calculated using the data from a single replicate of 
the HEK doxycycline experiment. The distributions in Figure 6-2C show the number of edits per 
RNA calculated across all bases with R2 greater than 0.9 for that replicate, and the Poisson 
binomial model in Figure 6-2C likewise included the same bases. By contrast, for Figure 12-2D-E, 
bases were only retained if they had R2 greater than 0.9 in all three replicates from the HEK 
doxycycline experiment. For this reason, the apparent numbers of edits per RNA are lower in 
Figure 9-2D-E than in Figure 12-2C. 
 
 

Gradient Descent: 
The gradient descent in Figure 6-3 and Figure 6-4 was implemented using custom code in Matlab. 
Briefly, the gradient descent algorithm was given an RNA editing distribution, which could either 
be an empirical distribution (Figure 6-3B single induction timepoints; Figure 6-3F,G; Figure 6-4A-
C) or a simulated distribution (Figure 6-3B except single-induction; Figure 6-3C-E; Figure 
6-4D,E). Simulated distributions were convex combinations of the editing histograms for a single 
replicate from the HEK doxycycline experiment. The gradient descent algorithm was also given a 
set of “basis vector” histograms, which were obtained by combining the data at each timepoint 
from all three replicates from the HEK doxycycline experiment. The gradient descent was then 
initialized by drawing a set of weights from a Dirichlet distribution with all parameters set to 
unity. The gradient descent minimized the mean squared error (L2 norm) between the input 
distribution and the convex combination of the basis vectors given by the weights. For each 
simulated distribution, we performed the gradient descent 1000 times and took the solution that 
minimized the L2 norm. For the analysis in Figure 12-6, we generated 1000 simulated 
distributions from a Dirichlet distribution with all parameters set to unity. 

 

Accuracy Metrics: 
For the single- and double-induction samples in Figure 6-3B and Figure 6-4D, temporal resolution 
is calculated by multiplying the distance of each timepoint away from the expected timepoint by 
the weight assigned to that timepoint, and summing. Thus, for the 3-hour single-induction pulse, 
if the decoder assigned weights of 0.5 to the 3-hour timepoint and 0.5 to the 5-hour timepoint, the 
resulting resolution would be 0.5*1 + 0.5*3=2 hours. The accuracy of the decoder is measured in 



202 
 

three ways throughout the manuscript. For the double-induction timepoints, we summed over all 
timepoints greater than 3 hours, after renormalizing the weights so that the sum of the weights 
assigned to timepoints above 3 hours equaled 1. 

For the square waves in Figure 6-3B,F,G, and for the arbitrary transcriptional program 
experiments in Figure 12-5, we calculated the accuracy as the sum of the absolute values of the 
differences between the assigned and expected weights, divided by 2 to avoid double-counting. 
Thus, if we expected one timepoint to get 100% of the total weight, and that timepoint instead 
got 80% of the total weight, then the resulting accuracy would be 80%. 

In Figure 6-4B, the accuracy is calculated as the mean absolute difference between the single cell 
estimates and the estimate for the bulk distribution. We calculate the accuracy in this way for the 
single cells because the ground truth transcriptional program is not known. The single cells stay 
on ice for up to an hour during processing, and we have not measured the editing kinetics during 
that time. 
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Figure 12-1: (A)  Five editing templates that were tested are shown. Of these, only templates A and B 
showed robust temporal editing that seemed appropriate for the construction of the tickertape system. Notes 
on the templates are in Table 12-3. (B) The mean number of edits per RNA for several different timepoints 
is shown for three different ADAR variants, and for templates A and B. The protocol used here is identical 
to that in Figure 6-1E. Some combinations, such as dmE488Q with template A, may show greater temporal 
resolution at short timescales. (C) Example editing histograms are shown for three different timepoints, for 
each combination of the three enzymes and two templates in (B). 
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Figure 12-2 : (A) Cells were induced with doxycycline, followed by actinomycin D 1 hour later, and then 
lysis 7 hours after actinomycin D. All editing histograms are normalized to sum to 1. Top left: the editing 
histogram for cells that were not transfected with ADAR, without removing RNAs with no edits on read 1 
or read 2 (i.e., “with zeros”). Top right: The editing histogram for cells that were transfected with ADAR, 
without removing RNAs with no edits on read 1 or read 2. Bottom: Same as top, but only considering 
RNAs with at least one edit on both Read 1 and Read 2 (i.e., “without zeros,” see Methods). (B) The 
qPCR for the iRFP transcript, normalized to GAPDH, is shown as a function of time during the experiment 
in Figure 6-1E. Values are normalized to the pre-doxycycline timepoint. Error bars show standard deviation 
(N=3). 
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Figure 12-3:  The Poisson binomial approach is the preferred approach for this form of estimation because it 
accounts for the exponential nonlinearity inherent in Poisson processes. However, we also found that a 
simple linear interpolation of the mean yields accurate estimations in many cases. In the case of the TRE 
tickertape, the mean interpolation estimated the 2.5hr and 4.5hr timepoints as 2.53hr ± 0.08hr and 4.38hr 
± 0.02hr (mean ± s.d., N=3 replicates), with errors of 5min ± 0.3min and 7.5min ± 1.1min (mean ± s.d., 
N=3 replicates), respectively. We performed similar experiments in 3T3 cells using repRNAs expressed 
under a light-inducible Vivid promoter (268), induced with blue light for one hour. We estimated the timing 
of light induction by interpolation of the mean number of edits per RNA, and yielded an accuracy of 17.7 ± 
7.5 minutes (mean ± s.d., N=9 samples total across three timepoints). (A) Editing histograms are shown for 
3T3 cells transfected with repRNAs expressed under the Vivid promoter, and stimulated for 1 hour (see 
Methods). In blue is the editing histogram for cells lysed one hour after stimulation began (i.e., immediately 
after it ended), and in orange is the histogram for cells lysed 6 hours after stimulation began. All editing 
histograms are normalized to sum to 1. (B) The mean number of edits per RNA is shown for the timepoints 
generated. Time indicates number of hours since the beginning of stimulation (the first timepoint is pre-
stimulation). Error bars are standard deviation (N=3). (C) The absolute prediction error, in minutes, is 
shown, averaged over all replicates for the 2hr, 3hr, and 4hr timepoints. The prediction was performed by 
mean interpolation, analogously to Figure 6-5D. Error bar is standard deviation (N=9, 3 replicates at each 
of 3 timepoints). 
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Figure 12-4:  The fact that tickertape works with multiple promoters raises the possibility of recording the 
activity of multiple promoters simultaneously in a single cell population, and we validated that this is 
possible using barcoded repRNAs responsive to the Tet and Vivid promoters. All editing histograms are 
normalized to sum to 1. (A) For cells transfected with a barcoded TRE-responsive repRNA construct, a 
barcoded Vivid-responsive repRNA construct, or both, the number of reads for the TRE-responsive 
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repRNA, Vivid-responsive repRNA, or both are shown. When only one repRNA is transfected, only one 
barcode is detected in significant numbers, confirming that there is minimal crossover between repRNA 
barcodes. Note that the third column is not the sum of the first and second columns, because it includes 
barcodes that did not perfectly align to either the Tet or Vivid repRNA barcodes. (B) To further confirm 
the possibility of multiplexing using barcoded repRNAs, we analyzed the editing histograms for cells that 
were transfected with a barcoded TRE-responsive repRNA construct, a barcoded Vivid-responsive repRNA 
construct, or both. The editing histograms for the Vivid-responsive and TRE-responsive repRNAs do not 
seem to change when the other repRNA is also present, again suggesting that there is minimal cross-talk 
between barcoded repRNA constructs. All editing histograms are normalized to sum to 1.   
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Figure 12-5 : For 1000 randomly generated weight vectors (“simulated vectors”), we used gradient descent 
to find the approximation (“approximated vectors”) that minimized the L2 norm (“inner product”) between 
the RNA editing distribution corresponding to the simulated vectors (“simulated distributions”) and the 
RNA editing distribution corresponding to the approximated vectors (“approximated distributions”). We 
refer to the L2 norm between the distributions as the inner product to distinguish it from the L2 norm 
between the vectors, which we refer to as the mean squared error (MSE). (A) The inner product between 
simulated distributions and approximated distributions is shown in blue. By contrast, the inner product 
between simulated distributions and other random distributions is shown in orange. (B) The mean squared 
error between the simulated vectors and approximated vectors is shown in blue. By contrast, the inner 
product between the simulated distributions and other random distributions is shown in orange. Note that a 
substantial number of random weight vectors have lower mean squared error than the approximated 
vectors. This is possible because the noise in the basis distribution set used to generate the approximated 
distributions from the approximated vectors is different from the noise in the basis distribution set used to 
generate the simulated distributions from the simulated vectors, so the minimum of inner product between 
the simulated and approximated distributions is not always the same as the minimum of the MSE between 
the simulated and approximated vectors. (C) Another visualization of (B). For each simulated vector, we 
calculated both an approximated vector and a random vector. The difference in MSE between the 
approximated and random vectors is shown. Negative values correspond to test vectors for which the 
associated random vector was a better approximation to the simulated vector than the approximated vector. 
(D) Blue and orange bars are the same as in (B). Yellow bars correspond to the minimum MSE among all 
of the solutions found by gradient descent for a given test vector, indicating that the inner product minima 
found by the gradient descent are not in general minima of the MSE. (E) The difference in the inner 
product between the solutions with the minimum MSE found by gradient descent, and the solutions with 
the minimum inner product, as a fraction of the minimum inner product. The solutions with the minimum 
MSE discovered by gradient descent often have inner products several fold higher than the solution with the 
minimum inner product.  
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Figure 12-6 : (A) The read structure of the repRNA is shown. (B) A schematic of the analysis pipeline is 
shown. See Methods. (C) For one replicate from the experiment in Figure 6-1E a histogram of the number 
of reads with a given percentage of As with Q score >27 is shown. This includes all sites that are As on the 
repRNA template, i.e., it also counts Gs that are read at positions that are A on the template. The black 
line indicates the 90% cutoff, which was applied to all analysis. (D) For one replicate from the experiment 
in Figure 6-1E, the percentage of reads having no edits in either R1 or R2 is shown as a function of time. 
These reads were excluded from analysis, except where otherwise stated in Figure 12-2.  
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Table 12-1: List of plasmids used in this study. This list excludes pCMV Tet3G, which is available 
commercially from Clontech. 

Num Name Description Used in 

116v1 pAAV-Ef1a-MCP-
dmADARE488Q 

Fusion of MS2 coat protein to Drosophila ADAR 
E488Q, under Ef1a promoter, with WPRE 

Supp. Fig 1B,C 

116v5 pAAV-Ef1a-MCP-
huADARE488QT490A 

As with 116v1, but Human ADAR2 E488QT490A All Figures 

116v6 pAAV-Ef1a-MCP-
huADART490A 

As with 116v1, but Human ADAR2 T490A Supp. Fig. 1B,C 

133 pcDNA3.1-GAVPO GAVPO (VIVID transactivator) expressed under the 
CMV promoter in the pcDNA3.1 backbone. 

Supp. Fig. 3,4 

147B1 pTRE3G-iRFP-B1-
repRNA_A 

repRNA Template A inserted into the 3’ UTR of 
iRFP between a bActin Zipcode element and a 
WPRE element, in the pTRE3G backbone, with RNA 
barcode TGC. Also includes a xrRNA element in the 
5’ UTR. 

Fig.1,2,3,4,Supp. 
Fig. 1,2,4. 

148B1 pTRE3G-iRFP-B1-
repRNA_B 

Same as 147B1, but with RNA Template B. Supp. Fig. 1 

149B1 pLenti-5xUASG-iRFP-
B1-repRNA-A 

repRNA Template A inserted into the 3’ UTR of 
iRFP between a bActin Zipcode element and a 
WPRE element, in a second generation lentiviral 
backbone with the Vivid promoter, with RNA 
barcode TGC. Also includes a xrRNA element in the 
5’ UTR. 

Supp. Fig. 3 

149B3 pLenti-5xUASG-iRFP-
B3-repRNA-A 

Same as 149B1, but with RNA barcode CTG. Supp. Fig.4. 

187 pTRE3G-c-fos-iRFP-B3-
repRNA-A 

Same as 147B1, with the TRE promoter removed and 
replaced with a c-Fos promoter from pAAV-cFos-
EYFP (Addgene 47907), and with RNA barcode 
CTG. 

Fig.5 
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Table 12-2: List of oligos used in this study. 

Name Description Sequence 

SGR-
174B-1 

Barcoded RT Primer 
with 3bp barcode 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN CCT 
GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-2 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN GAG 
GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-3 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN TTA 
GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-4 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN AGC 
GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-5 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN AAT 
GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-6 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNNNN CAA 
GCG AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-7 

Barcoded RT primer 
with 6 base barcode 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNAGTGTCGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-8 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNTATCCGGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-9 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCATTTGGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-10 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNATGCTAGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-11 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCCGTGGGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-12 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNATGAGTGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-13 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCGAGCAGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-14 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCGCGGCGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-15 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNACTTATGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-16 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNTGCATGGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-17 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNAGTAGGGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-18 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNGTTGACGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-19 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNTATCACGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-20 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCCCTAGGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-21 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNGCCCGTGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 
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SGR-
174B-22 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNTTCCCGGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-23 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNCATATAGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-24 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNAACGCCGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-25 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNAGGTTGGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-
174B-26 “” 

AATGATACGGCGACCACCGAGATCTACACNNNNNNNNNTCAATAGCG 
AGG CCC GCATCTTTCACAAATTTTGTAATCCAGAGG 

SGR-175 Custom Read 1 GCG AGG CCC GCA TCT TTC ACA AAT TTT GTA ATC CAG AGG 

SGR-
175-RC Custom Index 2 CCTCTGGATTACAAAATTTGTGAAAGATGCGGGCCTCGC 

SGR-176 
Barcoded PCR 
primer 

CAAGCAGAAGACGGCATACGAGAT ACTGGTCA AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-2 “” 

CAAGCAGAAGACGGCATACGAGAT GTGTTCGT AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-3 “” 

CAAGCAGAAGACGGCATACGAGAT TAACTGTT AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-4 “” 

CAAGCAGAAGACGGCATACGAGAT GATTGGTG AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-5 “” 

CAAGCAGAAGACGGCATACGAGAT GGAGAGAG AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-6 “” 

CAAGCAGAAGACGGCATACGAGAT TGAGCGAT AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-7 “” 

CAAGCAGAAGACGGCATACGAGAT CCTCCGTT AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-8 “” 

CAAGCAGAAGACGGCATACGAGAT AACATATT AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-9 “” 

CAAGCAGAAGACGGCATACGAGAT CTTACGTA AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-10 “” 

CAAGCAGAAGACGGCATACGAGAT TGACGTAG AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-11 “” 

CAAGCAGAAGACGGCATACGAGAT CTATGTAT AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-12 “” 

CAAGCAGAAGACGGCATACGAGAT TTTGCAGA AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-13 “” 

CAAGCAGAAGACGGCATACGAGAT GGTAGCGA AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-14 “” 

CAAGCAGAAGACGGCATACGAGAT ACGGGTTT AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-15 “” 

CAAGCAGAAGACGGCATACGAGAT TAAACCTC AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-16 “” 

CAAGCAGAAGACGGCATACGAGAT GAGAACTG AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 
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SGR-
176-15 “” 

CAAGCAGAAGACGGCATACGAGAT GGTTTGAT AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-18 “” 

CAAGCAGAAGACGGCATACGAGAT TAGATTAT AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-19 “” 

CAAGCAGAAGACGGCATACGAGAT AAGGTTAG AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-
176-20 “” 

CAAGCAGAAGACGGCATACGAGAT CCGAAAAT AAG TTA CTA TCG 
AAATGCCCTGAGTCCACCCCGG 

SGR-177 Custom Read 2 AAG TTA CTA TCG AAA TGC CCT GAG TCC ACC CCG G 

SGR-
177-RC Custom Index 1 CCGGGGTGGACTCAGGGCATTTCGATAGTAACTT 
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Table 12-3: List of RNA editing templates used in this study. The following sequences are the sequences 
that were analyzed for RNA editing. Notes are supplied as a courtesy to follow-on studies, and no 
representations are made as to their accuracy or reproducibility. 

 
Sequence Notes 

A_Short AGTACGCGTTAGATTAGATTAGATTAGATTAGAT
TAGATTAGAAAAATTAATACGTACACCATCAGG
GTACGTCTCAGACACCATCAGGGTCTGTCTGGTA
CAGCATCAGCGTACCATATATTTTTTCCAATCCA
ATCCAATCCAATCCAATCCAATCCAAATAGATCC
TAATCA 

 

A TTAGATTAGATTAGATTAGATTAGATTAGATTAG
AAAAATTAATATACGTACACCATCAGGGTACGTC
ATATATTTTTTCCAATCCAATCCAATCCAATCCA
ATCCAATCCAATACGCGTTAGATTAGATTAGATT
AGATTAGATTAGATTAGAAAAATTAATACGTAC
ACCATCAGGGTACGTCTCAGACACCATCAGGGTC
TGTCTGGTACAGCATCAGCGTACCATATATTTTT
TCCAATCCAATCCAATCCAATCCAATCCAATCCA
AATAGATCCTAATCA 

 

B_Short AGTACGCGTTAGATTAGATTAGATTAGATTAGAT
TAGATTAGAAAAATTAATACGTACACCATCAGG
GTACGTCTCAGACACCATCAGGGTCTGTCTGGTA
CAGCATCAGCGTACCATATATTTTTTCTAATCTA
ATCTAATCTAATCTAATCTAATCTAAATAGATCC
TAATCA 

 

B TTAGATTAGATTAGATTAGATTAGATTAGATTAG
AAAAATTAATATACGTACACCATCAGGGTACGTC
ATATATTTTTTCTAATCTAATCTAATCTAATCTAA
TCTAATCTAAACGCGTTAGATTAGATTAGATTAG
ATTAGATTAGATTAGAAAAATTAATACGTACACC
ATCAGGGTACGTCTCAGACACCATCAGGGTCTGT
CTGGTACAGCATCAGCGTACCATATATTTTTTCT
AATCTAATCTAATCTAATCTAATCTAATCTAAAT
AGATCCTAATCA 

 

C AGTACGCGTTAAATTATATTAACTAAATTATAGA
TTAACAAGAATATTAAATACGTACACCATCAGG
GTACGTCTCAGACACCATCAGGGTCTGTCTGGTA
CAGCATCAGCGTACCTATTTAATATTCTTGTTAA
TCTATAATTTAGTTAATATAATTTAAATAGATCC
TAATCA 

This template shows significant 
background editing by endogenous 
ADAR enzymes, even in the 
absence of trans-expression of 
ADAR. It also showed extremely 
rapid editing on a timescale of 
single minutes in the presence of 
blue light, when MCP-Cry2 and 
CIBN-dmADARE488Q were co-
expressed. 

D AGTACGCGATTGGTTAATCCCATTGGTTAATCCC
ATTGGTTAATCCCTTAATACGTACACCATCAGGG
TACGTCTCAGACACCATCAGGGTCTGTCTGGTAC
AGCATCAGCGTACCATATATGGGTTAAACTGATG

Editing on this template showed 
significant sensitivity to the identity 
of the N-terminal fusion. MCP-
ADAR was able to edit this 
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GGTTAAACTGATGGGTTAAACTGATATAGATCCT
AATCA 

template, whereas other ADAR 
enzymes, like a CIBN-ADAR 
fusion, were unable. 

E AGTACGCGAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAACGTACACCATC
AGGGTACGTCTCAGACACCATCAGGGTCTGTCTG
GTACAGCATCAGCGTACCTTTTTTTTTTTTTTTTT
TTTTTTTTTTTTTTTTTTTTTTTTTTTTATAGATCCT
AATCA 

This template was always severely 
underrepresented in sequencing, 
either due to difficulties with 
expression, amplification, or 
alignment. 
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Chapter 13   
Appendices to Chapter 7 

Appendix 1: Simulations of recombination cassette diversity 
For 4-value cassettes (two inversion units) we expect to obtain each possible recombination 
outcome with equal probability in the limit of many recombination operations, since both units 
have an equal probability of excision. For 8-value cassettes (four inversion units), this is no longer 
the case, because there are more ways to excise the internal cassettes. In Figure 13-1, we 
simulated 10  independent 8-value cassettes each undergoing a number of recombinations chosen 
from a Poisson distribution with mean 3, 4, 5, 6, 7 or 20. For > 10 recombinations per cassette we 
see convergence to the equilibrium distribution (infinite recombinations per cassette) with a 
Shannon entropy of 2.9 bits, as compared to 3 bits for a uniform distribution. (Similar simulations 
show that for a 4-value, 2-inversion-unit cassette, we achieve a nearly uniform distribution of 
values once > 4 recombinations occur per cassette.) 

Other factors (such as the distance between recombination sites) may also introduce bias into the 
recombination process, which may decrease the entropy provided by recombination. For this 
reason, we have assumed that 8-value cassettes generate 2.8 bits of information, even in the long-
time limit. However, it is important to emphasize that the Shannon entropy is relatively robust 
against deviations from uniformity, and that the expected error rate increases only linearly with 
the barcode degeneracy, so significant deviations from uniformity would be required to affect the 
error rate in a major way. 

The appropriateness of the Shannon entropy for evaluating the number of effective barcodes 
derives from its interpretation as a measure of compressibility. If a probability distribution over 𝐵 
bits has a Shannon entropy of 𝐷 bits, then any sufficiently-long sequence of values drawn from the 
𝐵-bit non-uniform distribution over barcodes can be mapped without loss of information onto a 
sequence of values drawn from a uniform 𝐷-bit probability distribution of the same length. The 
axon tracing problem encountered here for an 8-value cassette involves disambiguating a neuron of 
interest from a sequence of neurons with barcodes drawn from a non-uniform probability 
distribution over 3𝐶 bits, with 2.8𝐶 bits of entropy. Thus, for the purpose of the average barcode 
degeneracy (discussed further in Appendix 4 of this chapter), we may equivalently behave as 
though the barcodes encountered during axon tracing were drawn from a uniform probability 
distribution over 2.8𝐶 bits. 

Appendix 2: Possible methods for increasing the achievable genetic diversity 
In order to increase the amount of achievable genetic diversity for a given number of orthogonal 
recombination sites, it is necessary either to increase the number of values per cassette or to 
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implement a system that allows for the same recombination site to be used on multiple different 
cassettes. We consider one strategy in each category. 

Exponential scaling by eliminating excisions 
In the standard strategy, a cassette coding for 𝑚 values can produce one of 𝑚 proteins (via 𝑚 
RNAs), but if a system with exponential scaling could be found, a cassette coding for 𝑚 values 
could produce 2𝑚 proteins. One approach to achieve exponential scaling would be to eliminate the 
excision events altogether, for example by using Rci recombinase (289, 338), a recombinase which 
inverts but only very rarely excises, as proposed by Zador. If the only available operation were 
flipping, then a cassette with 4 flippable value registers (requiring 4 epitopes) would be capable of 
producing 2 = 16 possible molecular strings of those epitopes. If a cassette could be produced 
with 8 flippable value registers (requiring 8 epitopes), it would be capable of producing 2  = 256 
possible strings of epitopes. In this case, dedicating all available epitope/fluorophore pairs to 
values, 𝐶 cassettes could produce  phenotypes, in which case 6 cassettes would be sufficient 
to barcode any animal. 

Temporal Multiplexing 
Rather than limiting the multiplexing of cassettes to the number of orthogonal recombination sites 
available, one possibility is to use temporal multiplexing, re-using recombination sites across 
successive temporal cycles. 

For example, to double the effective number of sites, one could use inducible DNA binding 
proteins (339–345), such as CRISPRs – i.e., programmable gRNAs + nuclease-deficient Cas9 
(dCas9) – first blocking recombination at a first copy of each site and then blocking recombination 
at a second copy. For any given LoxP site, two cassettes using that site could be inserted into the 
genome, including LoxP-overlapping gRNA binding sites containing unique flanking sequences 
shared by all sites that are to recombine in a given temporal cycle. Initially, the gRNA 
corresponding to the first of the two cassettes would be expressed, blocking access to this first 
cassette by Cre recombinase. Upon induction of Cre, Cre would access the second of the two 
cassettes, permitting recombination there. Next, production of the second gRNA would be 
induced, blocking access of Cre to the second cassette. After a sufficient delay, induction of the 
first gRNA would be removed, allowing Cre to access the first cassette. This would prevent 
crosstalk between the two cassettes, while allowing recombination to occur at each one 
individually. Alternatively, these systems could also be made to progress autonomously by 
triggering the production of the gRNAs for the 𝑁th phase only after recombination in the (𝑁 −

1)th phase is completed. 
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Conservatively, at least six underlying orthogonal cassettes could be achieved using only published 
LoxP and Frt sites, although more may be available (184). Twelve cassettes could be achieved 
using 3 Cre sites, 3 Flp sites sites and a manually-induced dCas9 temporal multiplexing strategy 
to double the number of effective sites from 6 to 12. Finally, 18 cassettes could be achieved using 
a total of 9 underlying LoxP, Frt and other orthogonal sites, plus a two-step temporal 
multiplexing approach. 

Note that it may also be possible to re-use identical recombination sites across multiple cassettes 
(i.e., to give up orthogonality between cassettes), although at the risk of inter-cassette crosstalk. 
For example, BrainBow has often used multiple genome-integrated copies of the same cassette to 
drive analog color addition, e.g., roughly 16 copies of the same BrainBow cassette (291). 
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Figure 13-1: Diversity generation from an 8-value cassette for different amounts of 
recombinase activity. Simulations of 10  cassettes undergoing recombination are shown for 
the cases in which the number of recombinations performed is drawn from a Poisson distribution with an 
average of 3 (top left), 4 (top right), 5 (middle left), 6 (middle right), 7 (bottom left), and 20 (bottom 
right). After determining the number of recombinations to be performed, the actual recombination events 
were determined by randomly choosing an available pair of recombination sites and performing the 
corresponding operation. In the limit of many recombination events, the resulting distribution has 2.9 bits of 
entropy; in the most pessimistic case of 3 recombination events, the distribution has 2.6 bits of entropy. 
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Appendix 3: Possible fluorescent imaging scheme with >10 spectrally orthogonal 
colors 
Based on Figure 13-2, we anticipate that it would be possible to perform multicolor imaging with 
up to 12 channels on a customized microscope with 8 Coherent lasers and a Zeiss 34-channel 
QUASAR detection unit. The 12 fluorophores depicted in Figure 13-2 have been chosen for 
minimal spectral overlap, although some optimization may be required, especially in the range of 
the 405nm laser line4. Likewise, we anticipate that 10-color imaging would be possible on a 6-laser 
system, although this would require a relatively unusual laser line at 350nm (such as the Obis 
LG). Alternatively, it would be possible to achieve 10 color fluorescent imaging on a more 
standard 6 laser system with laser lines at 405 nm, 445 nm, 505 nm, 561 nm, 647 nm, and 685 nm, 
if a long Stokes-shift dye could be found with an excitation maximum at 560 nm. 

Note that in order to have cross-talk between two fluorophores, they must overlap in both their 
excitation spectra and in their emission spectra. Thus, although Atto 430LS is excited significantly 
by the Obis LG, Obis 405LX, and Obis 445LX, it can be spectrally distinguished from all other 
fluorophores excited by those lasers by virtue of its long emission wavelength. 
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Figure 13-2: An example 12-color strategy with 8 lasers. Using an 8-laser system from Coherent and a 
Zeiss QUASAR detection unit, we anticipate that it would be possible to detect up to 12 orthogonal colors 
at the single molecule level. A set of 12 prospective fluorophores are shown along with the laser lines that 
would be used. In the present system, we would expect significant cross-talk between BV605 and Atto 
430LS and between Atto 390 and Atto 425 due to the excitation of Atto 425 and Atto 430LS by the Obis 
405LX laser. This problem could be resolved if a laser were available with a line at 390nm rather than 405 
nm. There also appears to be overlap between Atto 490LS and BV605 due to non-negligible absorption of 
Atto 490LS at 400 nm, but in preliminary experiments we were able to distinguish between these two dyes 
at the single molecule level. Depending on the severity of the overlap, we expect that this system would 
allow imaging in at least 9 orthogonal channels, and potentially in 12 orthogonal channels. 
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Appendix 4: Axon tracing vs. unique barcoding 
In the ideal case, the number of barcodes generated by a phenotyping scheme is large enough that 
every cell in the brain receives a unique barcode with high probability (a generalized instance of 
the “birthday problem”) (346). In order for this to occur with high likelihood, we need 𝑃(𝑚, 𝑛) =

𝑛! × Binomial(𝑚, 𝑛)/𝑚 , the probability of no two identical barcodes chosen from a barcode pool 
of size 𝑚 when sampling 𝑛 neurons, to be close to 1. In this case, assuming the readout can be 
done faithfully, there is no chance of making errors in morphological tracing of neural projections, 
since the color code can be used to error-correct any tracing error. 

However, if color-based barcoding is combined with automated segmentation algorithms, it may 
be possible to achieve acceptably low error rates even if multiple neurons share the same barcode. 
Based on the performance of automated segmentation algorithms as currently applied to EM 
connectomics, we can crudely estimate the tracing error rate as a function of the barcode 
degeneracy. 

The probability of making an error in tracing is a function of the degeneracy of the barcode 
attached to the neuron, i.e., the total number of neurons in the brain that share the barcode. For 
a neuron with degeneracy 𝑀 – i.e., that neuron's barcode appears in a total of 𝑀 neurons across a 
brain of size 𝑁 neurons – the probability that any given neuron it encounters has the same 
barcode can be estimated as (𝑀 − 1)/𝑁. Thus, for each tracing error that a given automated 
tracing algorithm would make in a grayscale image, we can reasonably expect that the probability 
that the same algorithm would make the same error in a color-coded image is (𝑀 − 1)/𝑁. 

If the number of errors made per unit length in a grayscale image is 𝜖, then as a function of the 
degeneracy 𝑀, the probability that an error is made at least once in tracing a projection of length 
𝐿 is 

 𝑷𝑬(𝑴, 𝑳) = 𝟏 − 𝟏 −
𝑴 − 𝑳

𝑵

𝝐𝑳

≈
𝝐𝑳(𝑴 − 𝟏)

𝑵
 (49) 

The approximation holds assuming that 𝑀 ≪ 𝑁. Thus, if there are 𝑅 projections per neuron, the 
expected number of incorrectly traced projections (i.e., projections with at least one error) in the 
entire brain is given by 

 〈𝑬〉 = 𝝐〈𝑳〉𝑹(〈𝑴〉 − 𝟏) (50) 

In a recent EM connectomics study in mouse cortex (299), the authors found that there were on 
average 200 profiles per cubic micron, and that currently available automated tracing algorithms 
made an average of 7 errors per cubic micron. Given this, we can take 𝜖 to be on the order of 7 
errors per 200 microns of axonal length, or 35 errors per millimeter of axonal length (1 error per 
29 μm), for current automated tracing algorithms as per (299). For axons, we take 〈𝐿〉 ∼ 1 mm 
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and 𝑅 ∼ 1, in which case we find that the expected number of axon tracing errors across a brain 
is, very roughly, 

 〈𝑬〉𝐚𝐱𝐨𝐧 = 𝟑𝟓(〈𝑴〉 − 𝟏) (51) 

On the other hand, if we take 𝑅 ∼ 100 for dendrites and 𝐿 ∼ 100 μm, we have, in the entire brain, 
a rough estimate of 

 〈𝑬〉𝐚𝐱𝐨𝐧 = 𝟑𝟓𝟎(〈𝑴〉 − 𝟏) (52) 

Remarkably, these numbers are independent of the number of neurons in the brain, which can be 
understood by the fact that, as the number of neurons increases, the probability that neurons with 
the same barcode encounter each other decreases for fixed projection number and length, in our 
crude error model. 

Appendix 5: Peptide vs. RNA implementations 
We have chosen to use peptide epitopes here to achieve high labeling densities, since peptides can 
be expressed to high levels. However, RNA implementations of similar address-value barcoding 
schemes are also possible, and RNA readout is simplified by the ability to use hybridization probes 
– which can be made extremely specific (347) and orthogonal (348) – and/or direct in-situ 
sequencing (290). 

FISH-based RNA ColorCodes: Instead of probing protein epitopes with antibodies, we can use the 
identical genetic diversification strategy (top of Figure 7-2) but probe the resulting RNAs with 
FISH probes. This can be done using a single round of FISH probing with 𝐾 spectrally distinct 
fluorescently tagged hybridization probes, much as proposed for immuno-labeling of peptide 
epitopes above, or alternatively it can be done across multiple wash cycles of sequential FISH (10, 
297) using a smaller number of colors (e.g., only 2 or 4 fluorescent colors imaged per wash cycle). 

FISSEQ-based RNA ColorCodes: Fluorescent in-situ sequencing (FISSEQ) can also be employed 
to read out such RNA barcodes. The address will then become a FISSEQ-sequencable short RNA 
string, unique for each cassette, while the possible values will be short RNA strings shared across 
cassettes with a given value stochastically chosen for each cassette upon recombination. The main 
constraint here is that the currently-demonstrated FISSEQ read length is roughly 30 base-pairs, 
whereas individual LoxP sites themselves take up 34 base-pairs. We can solve this using a design 
like the following: (PanNeuronal Promoter) (Primer Binding Site 1) (Address) (First LoxP site) 
(Values), where the possible values resulting from recombination are (Primer Binding Site 
2)(SeqA) and (Primer Binding Site 2)(SeqB), i.e., all possible RNAs contain (Primer Binding Site 
2) directly adjacent to the chosen value (either SeqA or SeqB). The proposal is to run FISSEQ 
with two targeted sequencing primers, first one and then the other. Primer 1 sequences from 
(Primer Binding Site 1) into the (Address). Primer 2 sequences from (Primer Binding Site 2) into 
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one of (SeqA) or (SeqB) depending on which recombination event occurred in the genome-
integrated cassette. Note that we can readily achieve a huge address space here, since sequencing 
even 3 address bases gives 4 = 64 addresses, and therefore the number of values per cassette can 
be very limited, e.g., there are only two possible values in the above design. An alternative 
approach would be to leverage the single-base resolution of FISSEQ by making the Value strings 
also encode an Address for their parent cassettes. Then FISSEQ from only one primer would be 
needed. 

Appendix 6: Directed vs. random spatial separation 
It may be possible to increase the effective number of “addresses” for a fixed number of 
fluorophores by directing certain labels to certain sub-cellular compartments which can be 
spatially resolved from one another at the high spatial resolutions considered here. Compartments 
such as the membrane, microtubules, actin filaments, spectrin structures (349), mitochondria or 
simply the intracellular space (cytosol) are worth considering as potential independent domains to 
enhance multiplexing capacity. The phenotype is read out by observing the presence or absence of 
each of the labels from each of the structures. In this way, with 𝑠 structures and a labeling scheme 
that would generate 𝑏 bits of information in the absence of structure-based spatial multiplexing, 
we can raise the number of bits per ROI to 𝑠 × 𝑏. The 15 nm resolution of next-generation ExM 
should have sufficient spatial resolution to resolve such distinct subcellular structures and 
attribute the presence or absence of each label from each structure. Note that many of these 
components form precise intracellular geometric structures in the axon and in dendrites, e.g., actin 
rings (349), which could be useful in identifying and spatially resolving them. Moreover, there are 
well-known mouse lines with e.g. GFP-labeled actin filaments and microtubules, not to mention 
genetically encoded membrane and cytosolic labels. Of course, increasing the effective address 
space in this way requires an increase in the generated genotypic diversity, e.g., more orthogonal 
recombination sites. 

Application of directed spatial multiplexing to Drosophila/Zebrafish: A particularly interesting 
limiting case of this approach for Drosophila or larval Zebrafish uses just two resolvable spatial 
compartments, e.g., membrane vs. microtubules, and devotes all fluorophores to values rather 
than addresses, as shown in Figure 13-3. This scheme requires 10 epitope-fluorophore pairs and 10 
orthogonal recombinase sites applied to 4-value cassettes, and should thus be realizable with 
existing technologies. Because 4-value cassettes are expected to yield 2 bits of information per 
cassette, this approach yields 2 = 1,048,576 effective cell labels. Using this strategy, we would 
expect that in a Zebrafish or Drosophila brain with roughly 100k neurons, approximately 9% of 
available barcodes will be used, with 91% of neurons receiving a unique barcode, and 8.6% of 
neurons receiving a barcode that appears twice. See Appendix 4 of this chapter for a discussion of 
error rates in the scenario where not all neurons receive unique barcodes. 
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Figure 13-3:  Structural Barcoding for Whole Drosophila or Zebrafish Brains. This method uses 10 
orthogonal recombination sites, 10 orthogonal fluorophores, 10 epitopes/antibodies and two spatially 
resolvable cellular compartments (e.g., membrane and cytosol or membrane and microtubules) to uniquely 
barcode the Zebrafish or Drosophila brain. Each recombination site can generate four equi-probable epitope 
displays by producing either a scaffold without any epitopes, a scaffold with one of two epitopes, or a fusion 
of two scaffolds, each with an epitope. Cassettes differ only in the protein's target (e.g., membrane or 
cytosol/microtubules) and in the epitopes displayed on the protein. The membrane and 
cytosol/microtubules both receive 5 proteins, leading to a readout diversity of (4 ) = 1048576 barcodes. 
This is sufficient to uniquely label 90% of neurons in the Zebrafish or Drosophila brains. If this strategy 
were expanded to have 12 orthogonal fluorophores and 12 epitopes/antibodies, it would produce 16.8 million 
barcodes. 
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The cassette design follows a standard BrainBow design with two successive inversion units. Five 
cassettes each produce one of four proteins that are directed to the membrane, while the 
remaining five cassettes each produce one of four proteins that are targeted to some other 
spatially-resolvable non-membrane compartment such as the microtubule cytoskeleton. The 
proteins produced are either scaffolding proteins labeled with a single epitope (when the 
corresponding bit string is 01 or 10); scaffolding proteins without epitopes (when the 
corresponding bit string is 00); or a fusion of two scaffolding proteins, each with a single epitope, 
connected by a flexible linker (when the corresponding bit string is 11). Each protein produced in 
this way thus encodes 2 bits of information. Readout is performed by primary antibody staining 
against the epitopes, followed by staining with fluorescently labeled secondary antibodies. The 
sample can be imaged using confocal microscopy with 20x expansion. We anticipate that it would 
be possible to achieve 10 color fluorescent imaging on a 6 laser system (see Appendix 3, Chapter 
13). 
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